Skip to main content
Log in

Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW) metric. The gauge conditions are determined from the consistency conditions. The physical degrees of freedom of the model are obtained by the symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in the Hamilton-Jacobi formalism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tanaka and M. Sasaki: “No supercritical supercurvature mode conjecture in one-bubble open inflation”, Phys. Rev. D, Vol. 59, (1999), art. 023506.

    Google Scholar 

  2. G. Lavrelashvili: “Quadratic action of the Hawking-Turok instanton”, Phys. Rev. D, Vol. 58, (1998), art. 063505.

    Google Scholar 

  3. V.F. Mukhanov, H.A. Feldmann and R.H. Brandernerg: “Theory of cosmological perturbations”, Phys. Rep., Vol. 215, (1992), pp. 203–333.

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Garriga, X. Montes, M. Sasaki and T. Tanaka: “Canonical quantization of cosmological perturbations in the one-bubble open universe”, Nucl. Phys. B Vol. 513, (1998), pp. 343–374.

    Article  ADS  Google Scholar 

  5. S. Gratton and N. Turok: “Cosmological perturbations from the no boundary Euclidean path integral”, Phys. Rev. D, Vol. 60, (1999), art. 123507.

  6. P.A.M. Dirac: Lectures on Quantum Mechanics, Yeshiva University Press, New York, 1967.

    Google Scholar 

  7. M. Henneaux and C. Teitelboim: Quantization of Gauge Systems, Princeton Univ. Press, 1992.

  8. A. Khvedelidze, G. Lavrelashvili and T. Tanaka: “Cosmological perturbations in a Friedmann-Robertson-Walker model with a scalar field and false vacuum decay”, Phys. Rev. D, Vol. 62, (2000), art. 083501.

    Google Scholar 

  9. G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov: “Tunneling transitions with gravitation: Breakdown of the quasiclassical approximation”, Phys. Lett. B, Vol. 161, (1985), pp. 280–284.

    Article  ADS  Google Scholar 

  10. C.M. Amaral: “Configuration space constraints as projectors in the many-body system”, Nuovo Cimento B, Vol. 25(2), (1975), pp. 817–827.

    Google Scholar 

  11. P. Pitanga: “Symplectic projector in constrained systems”, Nuovo Cimento A, Vol. 103, (1990), pp. 1529–1535.

    MathSciNet  Google Scholar 

  12. L.R.U. Manssur, A.L.M.A. Nogueira and M.A. Santos: “An extended Abelian Chern-Simons model and the symplectic projector method”, Int. J. Mod. Phys. A, Vol. 17(14), (2002), pp. 1919–1929.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. M.A. De Andrade, M.A. Santos and I.V. Vancea: “Local physical coordinates from symplectic projector method”, Mod. Phys. Lett. A, Vol. 16(29), (2001), pp. 1907–1917.

    Article  ADS  Google Scholar 

  14. H. De Cicco and C. Simeone: “Gauge invariance of parametrized systems and path integral quantization”, Int. J. Mod. Phys. A, Vol. 14, (1999), pp. 5105–5120; C. Simeone: “Gauge fixation and global phase time for minisuperspaces”, J. Math. Phys., Vol. 40, (1999), pp. 4527–4537; M. Henneaux, C. Teitelboim and T. Vergara: “Gauge fixation and global phase time for minisuperspaces”, Nucl. Phys. B, Vol. 387, (1992), pp. 391–419.

    Article  MATH  ADS  Google Scholar 

  15. C. Carathéodory: Calculus of Variations and Partial Differential Equations of the First Order, Part II, Holden-Day, 1967.

  16. B.M. Pimentel, R.G. Teixteira and J.L. Tomazelli: “Hamilton-Jacobi approach to Berezinian singular systems”, Ann. Phys., Vol. 267, (1998), pp. 75–96.

    Article  MATH  ADS  Google Scholar 

  17. S.I. Muslih and Y. Güler: “Is gauge fixing of constrained systems necessary?”, Nuovo Cimento B, Vol. 113, (1998), pp. 277–289.

    ADS  Google Scholar 

  18. D. Baleanu and Y. Güler: “Hamilton-Jacobi treatment of a non-relativistic particle on a curved space”, J. Phys. A: Math. Gen., Vol. 34(1), (2001), pp. 73–80.

    Article  MATH  ADS  Google Scholar 

  19. D. Baleanu and Y. Güler: “Multi-Hamilton-Jacobi quantization of O(3) nonlinear sigma model”, Mod. Phys. Lett. B, Vol. 16(13), (2001), pp. 873–879.

    Article  Google Scholar 

  20. D. Baleanu and Y. Güler: “The Hamilton-Jacobi treatment of supersymmetric quantum mechanics”, Int. J. Mod. Phys. A, Vol. 16(13), 2001, pp. 2391–2397.

    Article  MATH  ADS  Google Scholar 

  21. B.M. Pimentel, P.J. Pompeia and J.F. da Rocha-Neto: “The Hamilton-Jacobi Approach to Teleparallelism”, Nuovo Cimento B, Vol. 120, (2005), pp. 981–992.

    ADS  Google Scholar 

  22. B.M. Pimentel, P.J. Pompeia, J.F. da Rocha-Neto and R.G. Teixeira: “The Teleparallel Lagrangian and Hamilton-Jacobi formalism”, Gen. Rel. Grav., Vol. 35(5), (2003), pp. 877–884.

    Article  MATH  ADS  Google Scholar 

  23. D. Baleanu: “Reparametrization invariance and Hamilton-Jacobi formalism”, Nuovo Cimento B, Vol. 118(1), (2004), pp. 89–95.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Baleanu, D. Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method. centr.eur.j.phys. 4, 503–510 (2006). https://doi.org/10.2478/s11534-006-0030-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-006-0030-1

Keywords

PACS (2006)

Navigation