Skip to main content

Some Mathematical Aspects in the Expanding Universe

  • Conference paper
  • First Online:
Analysis, Modelling, Optimization, and Numerical Techniques

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 121))

  • 1214 Accesses

Abstract

Recent astronomical observations of supernovae (SNIa) and barionic acoustic oscilations (BAO) indicate that the Universe is in an accelerated expansion period. Interpreted within the framework of general relativity (GR), the acceleration is explained by a positive cosmological constant or exotic matter models known in the literature as dark energy. However, there is an alternative approach to explain the acceleration without exotic matter models. Modifications of GR such as scalar–tensor gravity and high-order derivative gravity theories, naturally offer the explanation for the accelerated phase coming from the geometrical side. One of this higher-order theories is f(R) modified gravity. In this work, we use some mathematical results concerning to the Taylor expansions of tensor fields under the action of one-parameter families of diffeomorphism in the context of f(R) theories in the expanding universe. We mean gauge invariant in the sense of the second-kind gauge following the work exposed in Nakamura (Adv. Astr. 2010(576273):2010). We obtain the general gauge invariant at first-order equations in f(R) gravity. As an example, we write these first-order equations in f(R) gravity for a perturbed Friedmann–Lemaître–Robertson–Walker (FLRW) space-time. The gauge invariant scalar perturbations equations for perturbed FLRW are obtained explicitly in f(R) gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    like perturbation theory in quantum mechanics.

References

  1. Astier, P. et al.: The Supernova Legacy Survey: measurement of \({\Omega}_M, {\Omega}_{\Lambda}\) and w from the first year data set. Astron. Astrophys. 447, 3–1 (2006)

    Google Scholar 

  2. Bean, R., Bernat, D., Pogosian, L., Silvestri, A., Trodden, M.: Dynamics of Linear Perturbations in f(R) Gravity. Phys. Rev. D 75, 06402–0 (2007). astro-ph/0611321v2

    Google Scholar 

  3. Bruni, M., Materrese, S., Mollerach, S., Sonego, S.: Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond. Class. Quantum Grav. 14, 2585–2606 (1997)

    Article  MATH  Google Scholar 

  4. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.. Modified gravity and cosmology. Phys. Rep. 513(1–3), 1–189 (2012)

    Article  MathSciNet  Google Scholar 

  5. de la Cruz-Dombriz, A., Dobado, A., Maroto, A.L.: On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D 77, 12351–5 (2008). arXiv:0802.2999v2

    Google Scholar 

  6. Daly, R.A., Djorgovski, S.G.: A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy. Astrophys. J. 597, 9 (2003)

    Google Scholar 

  7. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relativ. 13, 3 (2010)

    Google Scholar 

  8. Durrer, R.: The cosmic microwave background.Cambridge University Press Date Published: September 2008 isbn: 9780521847049.http://www.cambridge.org/9780521847049

  9. Guarnizo, A., Castañeda, L., Tejeiro, J.M.: Boundary term in metric f(R) gravity: field equations in the metric formalism. Gen. Rel. Grav. 42, 2713–2728 (2010)

    Google Scholar 

  10. Hortua, J., Castañeda, L., Tejeiro, J.M.: Evolution of magnetic fields through cosmological perturbation theory. Phys. Rev. D 87, 10353–1 (2013)

    Article  Google Scholar 

  11. Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 141–142 (1984)

    Google Scholar 

  12. Molano, D.: Teoría de perturbaciones cosmológicas en teorías de gravedad modificada f(R). M.Sc. thesis, Universidad Nacional de Colombia, Observatorio Astronómico Nacional (to be submitted)

    Google Scholar 

  13. Nakamura, K.: Second-order gauge-invariant cosmological perturbation heory: current status. Adv. Astr. 2010, ID 576273 1–26 (2010)

    Google Scholar 

  14. Padmanabhan, T.: Equipartition energy, Noether energy and boundary term in gravitational action. Gen. Rel. Grav. 44, 268–1 (2012)

    Article  MathSciNet  Google Scholar 

  15. Perlmutter, S. et al. [Supernova Cosmology Project Collaboration]: Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)

    Google Scholar 

  16. Pogosian, L., Silvestri, A.: The pattern of growth in viable f(R) cosmologies. Phys. Rev. D 77, 02350–3 (2008). arXiv:0709.0296v3

    Google Scholar 

  17. Riess, A.G. et al. [Supernova Search Team Collaboration]: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Google Scholar 

  18. Riess, A.G., et al.: Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J. 607, 665 (2004)

    Google Scholar 

  19. Schouten, J.A.: Ricci Calculus. Springer, Berlin (1954)

    Book  MATH  Google Scholar 

  20. Sopuerta, C., Bruni, M., Gualtieri, L.: Non-linear N-parameter spacetime perturbations: Gauge transformations. Phys. Rev. D 70, 06400–2 (2004)

    Article  MathSciNet  Google Scholar 

  21. Stewart, J.M., Walker, M.: Perturbations of space-times in general relativity. Proc. R. Soc. Lond. A 341, 49–74 (1974)

    Google Scholar 

  22. Stewart, J.M.: Perturbations of Friedmann-Robertson-Walker cosmological models. Class. Quantum Grav 7 1169–1180 (1990)AQ7

    Google Scholar 

  23. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Molano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Molano, D., Castañeda, L. (2015). Some Mathematical Aspects in the Expanding Universe. In: Tost, G., Vasilieva, O. (eds) Analysis, Modelling, Optimization, and Numerical Techniques. Springer Proceedings in Mathematics & Statistics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-12583-1_20

Download citation

Publish with us

Policies and ethics