Skip to main content
Log in

Near viability for fully nonlinear differential inclusions

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness theorem, which are extensions to the nonlinear case of similar results for semilinear differential inclusions. As an application, we give an approximate null controllability result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu V., Analysis and Control of Nonlinear Infinite Dimensional Systems, Math. Sci. Engrg., 190, Academic Press, Boston, 1993

    Google Scholar 

  2. Bothe D., Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1996, 1(4), 417–433

    Article  MATH  MathSciNet  Google Scholar 

  3. Cârjă O., On the minimal time function for distributed control systems in Banach spaces, J. Optim. Theory Appl., 1984, 44(3), 397–406

    Article  MATH  MathSciNet  Google Scholar 

  4. Cârjă O., On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 1988, 56(2), 215–225

    Article  MATH  MathSciNet  Google Scholar 

  5. Cârjă O., On the minimum time function and the minimum energy problem; a nonlinear case, Systems Control Lett., 2006, 55(7), 543–548

    Article  MATH  MathSciNet  Google Scholar 

  6. Cârjă O., Donchev T., Postolache V., Nonlinear evolution inclusions with one-sided Perron right-hand side, J. Dyn. Control Syst., 2013, 19(3), 439–456

    Article  MATH  MathSciNet  Google Scholar 

  7. Cârjă O., Lazu A. I., Approximate weak invariance for differential inclusions in Banach spaces, J. Dyn. Control Syst., 2012, 18(2), 215–227

    Article  MATH  MathSciNet  Google Scholar 

  8. Cârjă O., Monteiro Marques M. D. P., Weak tangency, weak invariance, and Carathéodory mappings., J. Dynam. Control Systems, 2002, 8(4), 445–461

    Article  MATH  MathSciNet  Google Scholar 

  9. Cârjă O., Necula M., Vrabie I. I., Viability, Invariance and Applications, North-Holland Math. Stud., 207, Elsevier Science B.V., Amsterdam, 2007

    Google Scholar 

  10. Cârjă O., Necula M., Vrabie I. I., Necessary and sufficient conditions for viability for nonlinear evolution inclusions, Set-Valued Anal., 2008, 16(5–6), 701–731

    Article  MATH  MathSciNet  Google Scholar 

  11. Cârjă O., Postolache V., Necessary and sufficient conditions for local invariance for semilinear differential inclusions, Set-Valued Var. Anal., 2011, 19(4), 537–554

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarke F. H., Ledyaev Yu. S., Radulescu M. L., Approximate invariance and differential inclusions in Hilbert spaces, J. Dynam. Control Systems, 1997, 3(4), 493–518

    MATH  MathSciNet  Google Scholar 

  13. Din Q., Donchev T., Kolev D., Filippov-Pliss lemma and m-dissipative differential inclusions, Journal of Global Optimization, 2013, 56(4), 1707–1717

    Article  MATH  MathSciNet  Google Scholar 

  14. Donchev T., Multi-valued perturbations of m-dissipative differential inclusions in uniformly convex spaces, New Zealand J. Math., 2002, 31(1), 19–32

    MATH  MathSciNet  Google Scholar 

  15. Filippov A. F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control Optim., 1967, 5, 609–621

    Article  MATH  Google Scholar 

  16. Frankowska H., A priori estimates for operational differential inclusions, J. Differential Equations, 1990, 84(1), 100–128

    Article  MATH  MathSciNet  Google Scholar 

  17. Goreac D., Serea O.-S., Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems, Nonlinear Anal., 2010, 73(8), 2699–2713

    Article  MATH  MathSciNet  Google Scholar 

  18. Lazu A. I., Postolache V., Approximate weak invariance for semilinear differential inclusions in Banach spaces, Cent. Eur. J. Math., 2011, 9(5), 1143–1155

    Article  MATH  MathSciNet  Google Scholar 

  19. Tolstonogov A. A., Properties of integral solutions of differential inclusions with m-accretive operators, Mat. Zametki, 1991, 49(6), 119–131, 159

    MathSciNet  Google Scholar 

  20. Vrabie I. I., Compactness Methods for Nonlinear Evolutions, 2nd ed., Pitman Monogr. Surveys Pure Appl. Math., 75, Longman, New York, 1995

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Căpraru.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Căpraru, I., Lazu, A.I. Near viability for fully nonlinear differential inclusions. centr.eur.j.math. 12, 1447–1459 (2014). https://doi.org/10.2478/s11533-014-0424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0424-z

MSC

Keywords

Navigation