Skip to main content
Log in

Nonlinear evolution inclusions with one-sided perron right-hand side

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In a Banach space X with uniformly convex dual, we study the evolution inclusion of the form \( {x}^{\prime}(t)\in Ax(t)+F\left( {x(t)} \right) \), where A is an m-dissipative operator and F is an upper hemicontinuous multifunction with nonempty convex and weakly compact values. If X* is uniformly convex and F is one-sided Perron with sublinear growth, then, we prove a variant of the well known Filippov-Pliś theorem. Afterward, sufficient conditions for near viability and (strong) invariance of a set \( K\subseteq \overline{D(A)} \) are established. As applications, we derive ε - δ lower semicontinuity of the solution map and, consequently, the propagation of continuity of the minimum time function associated with the null controllability problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces. Israel J. Math. 12 (1972), 373-390.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-P. Aubin and A. Cellina, Differential inclusions. Springer, Berlin (1984).

    Book  MATH  Google Scholar 

  3. V. Barbu, Nonlinear differential equations of monotone types in Banach spaces. Springer, New York (2010).

    Book  MATH  Google Scholar 

  4. P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach. C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A47-A50.

    Google Scholar 

  5. D. Bothe, Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108 (1998), 109-138.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Cârjă and A. Lazu, Approximate weak invariance for differential inclusions in Banach spaces. J. Dynam. Control Systems 18 (2012), No. 2, 215-227.

    Article  MATH  Google Scholar 

  7. O. Cârjă and A. Lazu, Lower semi-continuity of the solution set for semi-linear differential inclusions. J. Math. Anal. Appl. 385 (2012), No. 2, 865-873.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Cârjă and A. Lazu, Lyapunov pairs for continuous perturbations of nonlinear evolutions. Nonlinear Anal. 71 (2009), No. 3-4, 1012-1018.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Cârjă, M. Necula, and I. I. Vrabie, Viability, invariance and applications. Elsevier Science B. V., Amsterdam (2007).

    MATH  Google Scholar 

  10. O. Cârjă, M. Necula, and I. I. Vrabie, Necessary and sufficient conditions for viability for nonlinear evolution inclusions. Set-Valued Anal. 16 (2008), No. 5-6, 701-731.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Cârjă and V. Postolache, Necessary and sufficient conditions for local invariance for semilinear differential inclusions. Set-Valued Var. Anal. 19 (2011), No. 4, 537-554.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Cellina and M. V. Marchi, Nonconvex perturbations of maximal monotone differential inclusions. Israel J. Math. 46 (1983), No. 1-2, 1-11.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Clarke, Yu. Ledyaev, R. J. Stern, and P. R. Wolenski, Qualitative properties of trajectories of control systems: a survey. J. Dynam. Control Systems 1 (1995), No. 1, 1-48.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Clarke, Yu. Ledyaev, and M. Radulescu, Approximate invariance and differential inclusions in Hilbert spaces. J. Dynam. Control Systems 3 (1997), No. 4, 493-518.

    MathSciNet  MATH  Google Scholar 

  15. M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Israel J. Math. 11 (1972), 57-94.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Diestel and J. Uhl, Vector measures. American Mathematical Society, Providence, R. I. (1977).

    MATH  Google Scholar 

  17. T. Donchev and E. Farkhi, On the theorem of Filippov–Pliś and some applications. Control Cybernet. 38 (2009), No. 4A, 1251-1271.

    MathSciNet  MATH  Google Scholar 

  18. V. Gaitsgory, Averaging and near viability of singularly perturbed control systems. J. Convex Anal. 13 (2006), No. 2, 329-352.

    MathSciNet  MATH  Google Scholar 

  19. D. Goreac and O. Serea, Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems. Nonlinear Anal. 73 (2010), No. 8, 2699-2713.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Lakshmikantham and S. Leela, Differential and integral inequalities: Theory and applications. Vol. I: Ordinary differential equations. Academic Press, New York (1969).

    Google Scholar 

  21. A. Lazu and V. Postolache, Approximate weak invariance for semilinear differential inclusions in Banach spaces. Cent. Eur. J. Math. 9 (2011), No. 5, 1143-1155.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Tolstonogov and Ya. Umanskiĭ, Solutions of evolution inclusions. II. Siberian Math. J. 33 (1992), No. 4, 693-702.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Cârjă.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cârjă, O., Donchev, T. & Postolache, V. Nonlinear evolution inclusions with one-sided perron right-hand side. J Dyn Control Syst 19, 439–456 (2013). https://doi.org/10.1007/s10883-013-9187-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-013-9187-2

Keywords and phrases

2000 Mathematics Subject Classification

Navigation