Skip to main content
Log in

On the classical simulation of unimolecular reaction processes

  • Invited Review
  • Published:
Central European Journal of Chemistry

Abstract

The numerical simulation of the internal motions of a molecule undergoing a unimolecular reaction on an assumed potential energy surface requires the step-by-step solution of a set of simultaneous differential equations. After several thousand time steps, due to differences in the handling of rounding errors in different computing systems, the situation often arises that no two computing machines will give the same result for a given trajectory, even when running the identical algorithm.

Such effects are demonstrated for a simple unimolecular isomerisation reaction. In general, it is only when reliance is placed on the integration of a single trajectory, rather than on an ensemble of similar trajectories, that conclusions may be unreliable. Moreover, under certain conditions, small molecules may show signs of chaotic internal motions; conversely, but for a different reason, large molecules may exhibit non-statistical characteristics rather than RRKM behaviour.

The rounding error problem, in a slightly different guise, has come to be dubbed the “butterfly effect” in popular culture, and the original proposition is re-examined using 16- and 32-decimal precision arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 92, 4357 (1996)

    Article  CAS  Google Scholar 

  2. D. Shen, H.O. Pritchard, Int. J. Chem. Kinetics 26, 729 (1994)

    Article  CAS  Google Scholar 

  3. W-T. Chan, Ph. D. thesis, York University (York University, Toronto, Canada, 1995)

    Google Scholar 

  4. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  5. W.L. Hase, D.G. Buckowski, J. Comp. Chem. 3, 335 (1982)

    Article  CAS  Google Scholar 

  6. M. Winger, D. Trzesniak, R. Barron, W.F. van Gunsteren, Phys. Chem. Chem. Phys. 11, 1934 (2009)

    CAS  Google Scholar 

  7. H.O. Pritchard, J. Phys. Chem. A 109, 1400 (2005)

    Article  CAS  Google Scholar 

  8. E.N. Lorenz, Trans. New York Acad. Sci., Ser. II 25, 409 (1963)

    Google Scholar 

  9. E.N. Lorenz, Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas? (AAAS, Boston, 1972) http://eapsweb.mit.edu/research/Lorenz/publications.htm

    Google Scholar 

  10. J. Gleik, Chaos, Making a New Science (Penguin, New York, 1987)

    Google Scholar 

  11. R. Redford, Havana (Universal Studios, Hollywood, CA, 1990)

    Google Scholar 

  12. D. Shen, Ph. D. thesis, York University (York University, Toronto, Canada, 1991)

    Google Scholar 

  13. Pilot and Air Traffic Controller Guide to Wake Turbulence, Training Manual 04SEC2 (Federal Aviation Administration, Washington, DC, 2004)

    Google Scholar 

  14. Aircraft Wake Turbulence, Circular AC90-23F (Federal Aviation Administration, Washington, DC, 2002)

    Google Scholar 

  15. W-T. Chan, D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 91, 1717 (1995)

    Article  CAS  Google Scholar 

  16. D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 86, 3171 (1990)

    Article  CAS  Google Scholar 

  17. D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 87, 3595 (1991)

    Article  CAS  Google Scholar 

  18. H.O. Pritchard, Quantum theory of unimolecular reactions (Cambridge University Press, Cambridge, 1984) Section 7.1

    Book  Google Scholar 

  19. D. Shen, H.O. Pritchard, Mol. Phys. 80, 1135 (1993)

    Article  CAS  Google Scholar 

  20. W.D. Price, P.D. Schnier, R.A. Jockusch, E.F. Strittmatter, E.R. Williams, J. Am. Chem. Soc. 118, 10640 (1996)

    Article  CAS  Google Scholar 

  21. R.L. Hayes, E. Fattal, N. Govind, E.A. Carter, J. Am. Chem. Soc. 123, 641 (2001)

    Article  CAS  Google Scholar 

  22. L. Sun, W.L. Hase, K. Song, J. Am. Chem. Soc. 123, 5753 (2001)

    Article  CAS  Google Scholar 

  23. R. Schork, H. Köppel, J. Chem. Phys. 115, 7907 (2001)

    Article  CAS  Google Scholar 

  24. D.J. Mann, W.L. Hase, J. Am. Chem. Soc. 124, 3208 (2002)

    Article  CAS  Google Scholar 

  25. T.R. Quinn, S. Tremaine, M. Duncan, Astron. J. 101, 2287 (1991)

    Article  Google Scholar 

  26. D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 92, 1297 (1996)

    Article  CAS  Google Scholar 

  27. H.O. Pritchard, S.R. Vatsya, D. Shen, J. Chem. Phys. 110, 9384 (1999)

    Article  CAS  Google Scholar 

  28. B.G. Sumpter, D.L. Thompson, J. Chem. Phys. 87, 5809 (1987)

    Article  CAS  Google Scholar 

  29. P.J. Stimac, J.R. Barker, J. Phys. Chem. A 112, 2553 (2008)

    Article  CAS  Google Scholar 

  30. N.B. Slater, Theory of unimolecular reactions (Methuen, London, 1959) Section 8.3

    Google Scholar 

  31. P.J. Robinson, K.A. Holbrook, Unimolecular reactions (Wiley, London, 1972) Section 7.2

    Google Scholar 

  32. D. Shen, H.O. Pritchard, J. Chem. Soc., Faraday Trans. 88, 2985 (1992)

    Article  CAS  Google Scholar 

  33. E.N. Lorenz, Tellus 16, 1 (1964)

    Article  Google Scholar 

  34. E.N. Lorenz, Physica D 35, 299 (1989)

    Article  Google Scholar 

  35. R.H. Dalling, M.E. Goggin, Am. J. Phys. 62, 563 (1994)

    Article  Google Scholar 

  36. D. Auerbach, Am. J. Phys. 63, 276 (1995)

    Article  Google Scholar 

  37. M.E. Goggin, R.H. Dalling, Am. J. Phys. 63, 277 (1995)

    Article  Google Scholar 

  38. P. Brumer, Adv. Chem. Phys. 47, 201 (1981)

    Article  CAS  Google Scholar 

  39. P. Brumer, S. Shapiro, Adv. Chem. Phys. 70, 365 (1988)

    Article  CAS  Google Scholar 

  40. D. Butler, Nature 466, 804 (2010)

    Article  CAS  Google Scholar 

  41. Description of the NCAR Community Atmospheric Model, NCAR Technical Note TN-464 (National Center for Atmospheric Research, Boulder, CO, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw O. Pritchard.

About this article

Cite this article

Pritchard, H.O. On the classical simulation of unimolecular reaction processes. cent.eur.j.chem. 9, 753–760 (2011). https://doi.org/10.2478/s11532-011-0061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0061-3

Keywords

Navigation