Skip to main content

Molecular Dynamics Simulations

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail—literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day—only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208–1209

    Article  CAS  Google Scholar 

  2. Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336–3359

    Article  CAS  Google Scholar 

  3. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  PubMed  CAS  Google Scholar 

  4. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon, New York, NY

    Google Scholar 

  5. Frenkel D, Smit B (2001) Understanding molecular simulation. Academic, New York, NY

    Google Scholar 

  6. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  7. MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics Studies of proteins. J Phys Chem B 102:3586–3616

    Article  PubMed  CAS  Google Scholar 

  8. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  10. Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New York, NY

    Google Scholar 

  11. Essman U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  12. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  13. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1998) LINCS: a linear constraint solver for molecular simulation. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  14. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  15. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Brooks BR et al (1983) CHARMM: a program for macromolecular energy, minmimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  17. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA, http://www.PyMOL.org

    Google Scholar 

  19. Ascenzi P et al (2003) The bovine basic pancreatic trypsin inhibitor (kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 4:231–251

    Article  PubMed  CAS  Google Scholar 

  20. Wlodawer A et al (1987) Structure of form III crystals of bovine pancreatic trypsin inhibitor. J Mol Biol 198:469–480

    Article  PubMed  CAS  Google Scholar 

  21. Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563

    Article  PubMed  CAS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  23. Berendsen HJC, Postma JPM, van Gunsteren WF (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. D. Reidel Publishing Company, Dordrecht, Germany, pp 331–342

    Chapter  Google Scholar 

  24. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  25. Kabsch W, Sanders C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  26. Jorgensen WL, Madura JD (1985) Temperature and size dependence for monte carlo simulations of TIP4P water. Mol Phys 56:1381–1392

    Article  CAS  Google Scholar 

  27. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential fuynctions. J Chem Phys 112:8910–8922

    Article  CAS  Google Scholar 

  28. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  29. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  30. Ensign DL, Kasson P, Pande V (2007) Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J Mol Biol 374:806–816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Voelz VA, Bowman GR, Beauchamp K, Pande VS (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9 (1-39). J Am Chem Soc 132:1526–1528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lindahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lindahl, E. (2015). Molecular Dynamics Simulations. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics