Skip to main content
Log in

Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The synthesis of cationic amphiphilic 1,4-dihydropyridine derivative, potential gene delivery agent is achieved via an efficient multi-step sequence. The key step of this approach is a two-component Hantzsch type cyclisation of 3-oxo-2-[1-phenylmethylidene]-butyric acid dodecyl ester and 3-amino-but-2-enoic acid dodecyl ester utilising bis(2-hydroxyethyl)ether as a solvent and 1-butyl-4-methylpyridinium chloride as a catalyst. The 1,4-dihydropyridine derivative with long alkyl ester chains at positions 3 and 5 of the 1,4-DHP ring — 3,5-bis(dodecyloxycarbonyl)-2,6-dimethyl-4-phenyl-1,4-dihydropyridine was obtained in substantially higher yield with respect to classical Hantzsch synthesis. Bromination of this compound followed by nucleophilic substitution of bromine with pyridine gave the desired cationic amphiphilic 1,4-dihydropyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Welton, Coord. Chem. Rev. 248, 2459 (2004)

    Article  CAS  Google Scholar 

  2. M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72, 1391 (2000)

    Article  CAS  Google Scholar 

  3. P. Wasserscheid, W. Keim, Angew. Chem., Int. Ed. Engl. 39, 3772 (2000)

    CAS  Google Scholar 

  4. J. Ranke, K. Molter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, B. Jastorff, Ecotoxicol. Environ. Saf. 58, 396 (2004)

    Article  CAS  Google Scholar 

  5. A.H. Azizov, R.V. Aliyeva, E.S. Kalbaliyeva, M. Ibrahimova, J. Appl. Catal. A. 375, 70 (2010)

    Article  CAS  Google Scholar 

  6. D.J. Triggle, Biochem. Pharmacol. 78, 217 (2009)

    Article  CAS  Google Scholar 

  7. A. Zicmanis, A. Hinica, S. Pavlovica, M. Klavins, Latv. Kim. Z. 3, 235 (2009)

    Google Scholar 

  8. S.J. Ji, Z.Q. Jiang, J. Lu, T.P. Loh, Synlett 5, 831 (2004)

    Article  Google Scholar 

  9. L. Ming, G.W. Si, W.L. Rong, L.Y. Feng, Y.H. Zheng, J. Mol. Catal. A: Chem. 258, 133 (2006)

    Article  Google Scholar 

  10. N. Tewari, N. Dwivedi, R.P. Tripathi, Tetrahedron Lett. 45, 9011 (2004)

    Article  CAS  Google Scholar 

  11. L. Xinzhong, E. Wumanjiang, J. Mol. Catal. A: Chem. 279, 159 (2008)

    Article  Google Scholar 

  12. B. Ni, Q. Zhang, A.D. Headley, Tetrahedron Lett. 49, 1249 (2008)

    Article  CAS  Google Scholar 

  13. X. Zhao, Y. Gu, J. Li, H. Ding, Y. Shan, Catal. Commun. 9, 2179 (2008)

    Article  CAS  Google Scholar 

  14. Z. Duan, Y. Gu, J. Zhang, L. Zhu, Y. Deng, J. Mol. Catal. A: Chem. 250, 163 (2006)

    Article  CAS  Google Scholar 

  15. E. Xanthakis, M. Zarevucka, D. Saman, M. Wimmerova, F.N. Kolisis, Z. Wimmer, Tetrahedron: Asymmetry 17, 2987 (2006)

    Article  CAS  Google Scholar 

  16. A. Sobolev, M.C.R. Franssen, B. Vigante, B. Cekavicus, R. Zhalubovskis, H. Kooijman, A.L. Spek, G. Duburs, Ae. de Groot, J. Org. Chem. 67, 401 (2002)

    Article  CAS  Google Scholar 

  17. Z. Hyvönen, A. Plotniece, I. Reine, B. Chekavichus, G. Duburs, A. Urtti, Biochim. Biophys. Acta 1509, 451 (2000)

    Article  Google Scholar 

  18. A. Urtti, Z. Hyvonen, A. Plotniece, N. Makarova, I. Reine, G. Tirzitis, B. Vigante, B. Cekavicus, A. Shmidlers, A. Krauze, R. Zhalubovskis, G. Duburs, M. Turunen, S. Yla-Herttuala, I. Jaaskelainen, M.R. Toppinen, WO 01/62946 A1, 2001; Chem. Abstr. 135, 206419h (2001)

  19. N. Makarova, G. Belevich, E. Bisenieks, M. Veveris, G. Dubur, Pharm. Chem. J. 22, 534 (1988)

    Article  Google Scholar 

  20. B. B. Subudhi, P. K. Panda, B. Bhatta, Indian J. Chem. B. Org. 48B, 725 (2009)

    CAS  Google Scholar 

  21. M. Filipan-Litvic, M. Litvic, V. Vinkovic, Bioorg. Med. Chem. 16, 9276 (2008)

    Article  CAS  Google Scholar 

  22. A.R. Bader, L.O. Cummings, H.A. Vogel, J. Am. Chem. Soc. 73, 4195 (1951)

    Article  CAS  Google Scholar 

  23. R.O. Robin, W. Moore, US Patent 2305558, 1942; Chem. Abstr. 37, P32201 (1943)

  24. M. Suarez, M. De Armas, O. Ramırez, A. Alvarez, R.M. Alvarez, D. Molero, C. Seoane, R. Liz, H.N. De Armas, N.M. Blaton, O.M. Peeters, N. Martın, New J. Chem. 29, 1567 (2005)

    Article  CAS  Google Scholar 

  25. E. Kolvari, A. Ghorbani-Choghamarani, P. Salehi, F. Shirini, M.A. Zolfigol, J. Iran. Chem. Soc. 4, 126 (2007)

    CAS  Google Scholar 

  26. I.P. Skrastinsh, V.V. Kastron, B.S. Chekavichus, A.E. Sausinsh, R.M. Zolotoyabko, G.Y. Dubur, Khim. Geterotsikl. Soedin. 1230 (1991) [Chem. Heterocycl. Comp. 27, 989 (1991)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadij Sobolev.

About this article

Cite this article

Pajuste, K., Plotniece, A., Kore, K. et al. Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative. cent.eur.j.chem. 9, 143–148 (2011). https://doi.org/10.2478/s11532-010-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-010-0132-x

Keywords

Navigation