Skip to main content
Log in

Structure of isolated tyrosyl-glycyl-glycine tripeptide. A comparative conformational study with peptides containing an aromatic ring

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The potential energy surface (PES) of tyrosyl-glycyl-glycine (YGG) tripeptide in solution was explored using EDMC (Electrostatically Driven Monte Carlo) and in the gas-phase by means of ab initio quantum chemical calculations. The theoretical computational analysis revealed that this tripeptide possesses a significant molecular flexibility. A C7 backbone conformation was the most energetically preferred for the central Gly residue, using both methodologies. Some new stable conformers that have not been previously reported were identified in the gas phase as well. This study points out the interplay of backbone and side-chain contributions in determining the relative stabilities of energy minima. In addition, the peptide backbone of YGG was compared with other small peptides containing aromatic side-chains (Phe-Gly-Gly and Trp-Gly-Gly). The comparison with experimental X-ray results was also satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Zimmerman, M.S. Pottle, G. Némethy, H.A. Scheraga, Macromolecules 10, 1 (1977)

    Article  CAS  Google Scholar 

  2. K.T. O’Neil, W.F. DeGrado, Science 250, 646 (1990)

    Article  Google Scholar 

  3. M.J. Rooman, J.P.A. Kocher, S.J. Wodak, Biochemistry 31, 10226 (1992)

    Article  CAS  Google Scholar 

  4. M. Blaber, X.J. Zhang, B.W. Matthews, Science 260, 1637 (1993)

    Article  CAS  Google Scholar 

  5. C. Brooks, D.A. Case, Chem. Rev. 93, 2487 (1993)

    Article  CAS  Google Scholar 

  6. A.G. Street, S.L. Mayo, Proc. Natl. Acad. Sci. U.S.A. 96, 9074 (1999)

    Article  CAS  Google Scholar 

  7. P. Koehl, V. Levitt, Proc. Natl. Acad. Sci. U.S.A. 96, 12524 (1999)

    Article  CAS  Google Scholar 

  8. G. Chasse et al., J. Mol. Struct. (THEOCHEM) 537, 319 (2001)

    Article  CAS  Google Scholar 

  9. H. Valdés, K. Pluhácková, M. Pitonák, J. Rezác, P. Hobza. Phys. Chem. Chem. Phys. 10, 2747, (2008)

    Article  Google Scholar 

  10. S. Anishetty, G. Pennathur, R. Anishetty. BMC Struct. Biol. 2, 9 (2002)

    Article  Google Scholar 

  11. G. Duan, V.H. Smith, Jr., D. Weaver, Chem. Phys. Lett. 310, 323 (1999)

    Article  CAS  Google Scholar 

  12. J.B.O. Mitchell, C.L. Nandi, I.K. McDonald, J.M. Thornton, J. Mol. Biol. 239, 315 (1994)

    Article  CAS  Google Scholar 

  13. M.M. Flocco, S.L. Mowbray, J. Mol. Biol. 235, 709 (1994)

    Article  CAS  Google Scholar 

  14. F. Nardi, G.A. Worth, R.C. Wade, Folding and Design 2, S62 (1997)

    Article  CAS  Google Scholar 

  15. J.B.O. Mitchell et al., Nature 366, 413 (1993)

    Article  Google Scholar 

  16. G. Tóth, C.R. Watts, R.F. Murphy, S. Lovas, Proteins: Struct. Funct. Genet. 43, 373 (2001)

    Article  Google Scholar 

  17. D. Reha et al., Chem. Eur. J. 11, 6803 (2005)

    Article  CAS  Google Scholar 

  18. H. Valdés, D. Reha, P. Hobza, J. Phys. Chem. B 110, 6385 (2006)

    Article  Google Scholar 

  19. J. Cerný, P. Jurecka, P. Hobza, H. Valdés, J. Phys. Chem. A 111, 1146 (2007)

    Article  Google Scholar 

  20. D. Toroz, T. van Mourik, Mol. Phys. 105, 209 (2007)

    Article  CAS  Google Scholar 

  21. L.F. Holroyd, T. van Mourik, Chem. Phys. Lett. 442, 42 (2007)

    Article  CAS  Google Scholar 

  22. T. van Mourik, P.G. Karamertzanis, S.L. Price, J. Phys. Chem. A 110, 8 (2006)

    Article  Google Scholar 

  23. M.R. Peterson, I.G. Csizmadia, J. Am. Chem. Soc. 100, 6911 (1978)

    Article  CAS  Google Scholar 

  24. M.R. Peterson, I.G. Csizmadia, Prog. Theor. Org. Chem. 3, 190 (1982)

    CAS  Google Scholar 

  25. M.F. Masman, S. Lovas, R.M. Murphy, R.D. Enriz, A.M. Rodríguez, J. Phys. Chem. A. 111, 10682 (2007)

    Article  CAS  Google Scholar 

  26. A.M. Rodríguez, J.C.P. Koo, D. Rojas, N. Peruchena, R.D. Enriz, Inter. J. Quant. Chem. 106, 1580 (2006)

    Article  Google Scholar 

  27. M.W. Klipfel et al., J. Phys. Chem. A. 107, 5079 (2003)

    Article  CAS  Google Scholar 

  28. M.F. Masman et al., Eur. Phys. J. D. 20, 531 (2002)

    Article  CAS  Google Scholar 

  29. V. Pichon-Pesme, H. Lachekar, M. Souhassou, C. Lecomte, Acta Cryst. B56, 728 (2000)

    CAS  Google Scholar 

  30. A. Liwo et al., Biopolymers 38, 157 (1996)

    Article  CAS  Google Scholar 

  31. D.R. Ripoll, H.A. Scheraga, Biopolymers 27, 1283 (1988)

    Article  CAS  Google Scholar 

  32. D.R. Ripoll, H.A. Scheraga, Biopolymers 30, 165 (1990)

    Article  CAS  Google Scholar 

  33. H.A. Scheraga, D.R. Ripoll, A. Liwo, C. Czaplewski, User Guide ECEPPAK and ANALYZE Programs.

  34. G. Némethy et al., J. Phys. Chem. 96, 6472 (1992)

    Article  Google Scholar 

  35. J. Vila, R.L. Williams, M. Vásquez, H.A. Scheraga, Proteins: Struct. Funct. Genet. 10, 199 (1991)

    Article  CAS  Google Scholar 

  36. R.L. Williams, J. Vila, G. Perrot, H.A. Scheraga, Proteins: Struct. Funct. Genet. 14, 110 (1992)

    Article  CAS  Google Scholar 

  37. M.F. Masman et al., Eur. J. Med. Chem. 44, 212 (2009)

    Article  CAS  Google Scholar 

  38. M.J. Frisch et al., Gaussian 03, Revision B.05, Gaussian Inc. (Pittsburgh PA, 2003)

    Google Scholar 

  39. W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Theory (John Wiley & Sons, New York, 1986)

    Google Scholar 

  40. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  41. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  CAS  Google Scholar 

  42. P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209 (1974)

    Article  CAS  Google Scholar 

  43. T.H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  CAS  Google Scholar 

  44. R.A. Kendall, T.H. Dunning, Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  CAS  Google Scholar 

  45. E.G. Robertson, J.P. Simons, Phys. Chem. Chem. Phys. 3, 1 (2001)

    Article  CAS  Google Scholar 

  46. H. Valdes, V. Spiwok, J. Rezac, D. Reha, A.G. Abo- Riziq, M.S. de Vries, P. Hobza. Chem. Eur. J. 14, 4886 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Rodríguez.

Electronic supplementary material

About this article

Cite this article

Barrera Guisasola, E.E., Masman, M.F., Enriz, R.D. et al. Structure of isolated tyrosyl-glycyl-glycine tripeptide. A comparative conformational study with peptides containing an aromatic ring. cent.eur.j.chem. 8, 566–575 (2010). https://doi.org/10.2478/s11532-010-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-010-0015-1

Keywords

Navigation