Skip to main content
Log in

DFT investigation on mechanism of dirhodium tetracarboxylate-catalyzed O-H insertion of diazo compounds with H2O

  • Reserch Article
  • Published:
Central European Journal of Chemistry

Abstract

The mechanism of the dirhodium tetracarboxylate-catalyzed O-H insertion reaction of diazomethane and methyl diazoacetate with H2O has been studied in detail using DFT calculations. The rhodium catalyst and a diazo compound couple to form a rhodiumcarbene complex. Of two reaction pathways of the Rh(II)-carbene complex with H2O, the stepwise pathway is more preferable than the concerted one. Formation of a Rh(II) complex-associated oxonium ylide is an exothermal process, and direct decomposition of the ylide gives a very high barrier. The high barriers for the 1,2-H shift of Rh(II) complex-associated oxonium ylides make the ylides become stable intermediates in both reactions, especially for the reactions in solution. Difficulty in formation of a free oxonium ylide supports experimental results, indicating that the Rh(II) complex-catalyzed nucleophilic addition of a diazo compound proceeds via a Rh(II) complex-associated oxonium ylide rather than via a free oxonium ylide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Padwa, M.D. Weingarten, Chem. Rev. 96, 223 (1996)

    Article  CAS  Google Scholar 

  2. T. Ye, M.A. McKervey Chem. Rev. 94, 1091 (1994)

    Article  CAS  Google Scholar 

  3. D.F. Taber, R.E. Ruckle, Jr. J. Am. Chem. Soc. 108, 7686 (1986)

    Article  CAS  Google Scholar 

  4. M.P. Doyle et al., J. Am. Chem. Soc. 115, 958 (1993)

    Article  CAS  Google Scholar 

  5. P. Wang, J. Adams, J. Am. Chem. Soc. 116, 3296 (1994)

    Article  CAS  Google Scholar 

  6. M.C. Pirrung, A.T. Morehead, Jr. J. Am. Chem. Soc. 116, 8991 (1994)

    Article  CAS  Google Scholar 

  7. J. Wang, B. Chen, J. Bao, J. Org. Chem. 63, 1853 (1998)

    Article  CAS  Google Scholar 

  8. Y. Landais, L. Parra-Rapado, D. Planchenault, V. Weber, Tetrahedron Lett. 38, 229 (1997)

    Article  CAS  Google Scholar 

  9. H.M.L. Davies, Q. Jin, P. Ren, A.Y. Kovalevsky, J. Org. Chem. 67, 4165 (2002)

    Article  CAS  Google Scholar 

  10. E. Nakamura, N. Yoshikai, M. Yamanaka, J. Am. Chem. Soc. 124, 7181 (2002)

    Article  CAS  Google Scholar 

  11. A. Padwa, J.P. Snyder, E.A. Curtis, S.M. Sheehan, K.J. Worsencroft, C.O. Kappe, J. Am. Chem. Soc. 122, 8155 (2000)

    Article  CAS  Google Scholar 

  12. S. M. Sheehan, A. Padwa, J. P. Snyder, Tetrahedron Lett. 39, 949 (1998)

    Article  CAS  Google Scholar 

  13. M.P. Doyle, M.A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds (Wiley, New York, 1998)

    Google Scholar 

  14. M.P. Doyle, M. Yan, Tetrahedron Lett. 43, 5929 (2002)

    Article  CAS  Google Scholar 

  15. A. Padwa, S.F. Hornbuckle, Chem. Rev. 91, 263 (1991)

    Article  CAS  Google Scholar 

  16. Z. Qu, W. Shi, J. Wang, J. Org. Chem. 69, 217 (2004)

    Article  CAS  Google Scholar 

  17. D.J. Miller, C.J. Moody, Tetrahedron 51, 10811 (1995)

    Article  CAS  Google Scholar 

  18. C. Lu, H. Liu, Z. Chen, W. Hu, A. Mi, Org. Lett. 7, 83 (2005)

    Article  CAS  Google Scholar 

  19. C. Lu, H. Liu, Z. Chen, W. Hu, A. Mi, Chem. Commun. 20, 2624 (2005)

    Article  Google Scholar 

  20. S. Kitagaki et al., J. Am. Chem. Soc. 121, 1417 (1999)

    Article  CAS  Google Scholar 

  21. M.P. Doyle, D.C. Forbes, M.N. Protopova, S.A. Stanley, M.M. Vasbinder, K.R. Xavier, J. Org. Chem. 62, 7210 (1997)

    Article  CAS  Google Scholar 

  22. D.M. Hodgson, P.A. Stupple, C. Johnstone, Tetrahedron Lett. 38, 6471 (1997)

    Article  CAS  Google Scholar 

  23. M.P. Doyle, D.C. Forbes, M.M. Vasbinder, C.S. Peterson, J. Am. Chem. Soc. 120, 7653 (1998)

    Article  CAS  Google Scholar 

  24. G.G. Cox, C.J. Moody, D.J. Austin, A. Padwa, Tetrahedron 49, 5109 (1993)

    Article  CAS  Google Scholar 

  25. C. J. Moody, D.J. Miller, Tetrahedron 54, 2257 (1998)

    Article  CAS  Google Scholar 

  26. N. McCarthy, M.A. McKervey, T. Ye, M. McCann, E. Murphy, M.P. Doyle, Tetrahedron Lett. 33, 5983 (1992)

    Article  CAS  Google Scholar 

  27. N. Pierson, C. Fernandez-Garcia, M.A. McKervey, Tetrahedron Lett. 38, 705 (1997)

    Article  Google Scholar 

  28. J.S. Clark, M. Fretwell, G.A. Whitlock, C.J. Burns, D.N.A. Fox, Tetrahedron Lett. 39, 97 (1998)

    Article  CAS  Google Scholar 

  29. R.P. Wurz, A.B. Charette, Org. Lett. 4, 4531 (2002)

    Article  CAS  Google Scholar 

  30. Z.F. Liu, Y. Wang, X.F. Yue, K.L. Han, Chem. Res. Chinese U. 23, 221 (2007)

    Article  Google Scholar 

  31. Z.F. Liu, X.F. Yue, Q. Wei, K.L. Han, Chin. Chem. Lett. 18, 107 (2007)

    Article  CAS  Google Scholar 

  32. M.J. Frisch et al., J. A. Gaussian 98, revision A.9 (Gaussian, Inc., Pittsburgh, PA, 1998)

    Google Scholar 

  33. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  35. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  CAS  Google Scholar 

  36. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 284 (1985)

    Article  Google Scholar 

  37. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  CAS  Google Scholar 

  38. K. Fukui, Acc. Chem. Res. 14, 363 (1981)

    Article  CAS  Google Scholar 

  39. C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90, 2154 (1989)

    Article  CAS  Google Scholar 

  40. C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94, 5523 (1990)

    Article  CAS  Google Scholar 

  41. S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55, 117 (1981)

    Article  CAS  Google Scholar 

  42. S. Miertus, J. Tomasi, J. Chem. Phys. 65, 239 (1982)

    Article  CAS  Google Scholar 

  43. V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19, 404 (1998)

    Article  CAS  Google Scholar 

  44. H. Zhang, R.S. Zhu, G.J. Wang, K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 110, 2922 (1999)

    Article  CAS  Google Scholar 

  45. K.L. Xie, Y. Zhang, M.Y. Zhao, K.L. Han, Phys. Chem. Chem. Phys. 5, 2034 (2003)

    Article  CAS  Google Scholar 

  46. T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)

    Article  CAS  Google Scholar 

  47. T.S. Chu, K.L. Han, G.C. Schatz, J. Phys. Chem. A 111, 8286 (2007)

    Article  CAS  Google Scholar 

  48. T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008)

    Article  CAS  Google Scholar 

  49. K.L. Han, G.Z. He, J. Photochem. Photobiol. C: Photochem. Rev. 8, 55 (2007)

    Article  CAS  Google Scholar 

  50. K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996)

    Article  CAS  Google Scholar 

  51. J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005)

    Article  Google Scholar 

  52. C. Gonzalez, A. Restrepo-Cossio, M. Marques, K.B. Wiberg, J. Am. Chem. Soc. 118, 5408 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Liu.

Electronic supplementary material

About this article

Cite this article

Liu, Z., Liu, J. DFT investigation on mechanism of dirhodium tetracarboxylate-catalyzed O-H insertion of diazo compounds with H2O. cent.eur.j.chem. 8, 223–228 (2010). https://doi.org/10.2478/s11532-009-0118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-009-0118-8

Keywords

Navigation