Skip to main content
Log in

The difference in stability between 5′R and 5′S diastereomers of 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

Oxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it has been decided to calculate the stability of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The calculations showed a significant negative enthalpy for glycosidic bond cleavage reaction for cationic forms and slightly negative for neutral ones. The preliminary study of the discussed process has shown the nature of stepwise nucleophilic substitution DN*AD type mechanism. Surprisingly, the different values in free energy, between short-lived oxacarbenium ion intermediates, have been found to lie over a relatively small range, around 1 and 2.8 kcal mol−1. For anions, the decomposition enthalpies were found as positive in aqueous phases. These theoretical results are supported by the formic acid hydrolysis experiments of both diastereomers of cdA, for the first time. (5′S)cdA exhibited higher stability than (5′R)cdA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cadet, T. Duoki, D. Gasparutto, J-L. Ravanat, Mutation Research 531, 5 (2003)

    CAS  Google Scholar 

  2. K. Miaskiewicz, J.H. Miller, A.F. Fuciarelli, Nucleic Acids Res. 23, 515 (1995)

    Article  CAS  Google Scholar 

  3. C. Chatgilialoglu, M. Guerra, Q.G. Mulazzani, J. Am. Chem. Soc. 125, 3839 (2003)

    Article  CAS  Google Scholar 

  4. R. Flyunt, R. Bazzanini, C. Chatgilialoglu, Q.G. Mulazzani, J. Am. Chem. Soc. 122, 4225 (2000)

    Article  CAS  Google Scholar 

  5. R. bo Zhang, L.A. Eriksson, Chem. Phys. Lett. 417, 303 (2006)

    Article  Google Scholar 

  6. K. Randerath, G-D. Zhou, R.L. Somers, J.H. Robbins, P.J. Brooks, J. Biol. Chem. 276, 36051 (2001) (and references therein)

    Article  CAS  Google Scholar 

  7. M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radic. Biol. 30, 774 (2001)

    Article  CAS  Google Scholar 

  8. J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Rad. Phys. Chem. 72, 293 (2005)

    Article  CAS  Google Scholar 

  9. M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radical Biol. Med. 30, 774 (2001)

    Article  CAS  Google Scholar 

  10. P. Jaruga, M. Birincioglu, H. Rodriguez, M. Dizdaroglu, Biochemistry 41, 3703 (2002)

    Article  CAS  Google Scholar 

  11. L.B. Jimenez, S. Encinas, C. Chatgilialoglu, M.A. Miranda, Org. Biomol. Chem. 6, 1083 (2008)

    Article  CAS  Google Scholar 

  12. R. Rios-Font, L. Rodriguez-Santiago, J. Bertran, M. Sodupe, J. Phys. Chem. B. 111, 6071 (2007)

    Article  CAS  Google Scholar 

  13. J.T. Stivers, Y.L. Jiang, Chem. Rev. 103, 2729 (2003)

    Article  CAS  Google Scholar 

  14. T. Lindahl, B. Nyberg, Biochemistry 11, 3610 (1967)

    Article  Google Scholar 

  15. A.N. Richardson, J. Gu, S. Wang, Y. Xie, H.F. Schaefer III, J. Am. Chem. Soc. 126, 4404 (2004)

    Article  CAS  Google Scholar 

  16. J.A. Theruvathu, P. Jaruga, M. Dizdaroglu, P.J. Brooks, Mech. Ageing & Dev. 128, 494 (2007)

    Article  CAS  Google Scholar 

  17. A. Romieu, D. Gasparutto, D. Molko, J. Cadet, J. Org. Chem. 63, 5245 (1998)

    Article  CAS  Google Scholar 

  18. A. Romieu, D. Gasparutto, J. Cadet, Chem. Res. Toxicol. 12, 412 (1999)

    Article  CAS  Google Scholar 

  19. B. Karwowski, J. Gaillard, A. Grand, J. Cadet, Org. Biomol. Chem. 6, 3408 (2008)

    Article  CAS  Google Scholar 

  20. B. Karwowski, Tetrahedron Asym. 19, 2390 (2008)

    Article  CAS  Google Scholar 

  21. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard-III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  22. W.J. Hehre, L. Radom, P. Schleyer, R.J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

    Google Scholar 

  23. R. Krishnan, H.B. Schlegel, J.A. Pople, J. Chem. Phys. 72, 4654 (1980)

    Article  CAS  Google Scholar 

  24. L.T. Nguyen, T.N. Le, M.T. Nguyen, J. Chem. Soc., Faraday Trans. 94, 3541 (1998)

    Article  CAS  Google Scholar 

  25. V. Venkatesan, K. Sndararajan, K. Sankaran, K.S. Viswanathan, Spectrochem. Acta A 58, 467 (2002)

    Article  CAS  Google Scholar 

  26. S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982)

    Article  CAS  Google Scholar 

  27. M.J. Frisch et al., Gaussian 03, Revision D.01 (Gaussian Inc., Pittsburgh, PA, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boleslaw T. Karwowski.

About this article

Cite this article

Karwowski, B.T. The difference in stability between 5′R and 5′S diastereomers of 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase. cent.eur.j.chem. 8, 134–141 (2010). https://doi.org/10.2478/s11532-009-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-009-0104-1

Keywords

Navigation