Skip to main content
Log in

Electrosynthesis and thermal characterization of basic copper carbonate nanoparticles

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The present study concerns the electrochemical synthesis of basic copper carbonate nanoparticles by oxidation of metallic copper on the anode in an aqueous bicarbonate solution. This simple and one-step preparation can be considered as green synthesis. The scanning electron microscopy (SEM) analysis indicates that average particle size of the product is in the range of about 70 nm. On the other hand, basic copper carbonate micro-powder has been prepared, by mixing solutions of copper(II) sulphate and sodiu bicarbonate. The SEM analysis showed that the size of particles prepared in the same way is in the range of about 1 µm. In another part of this study, the thermal decomposition of micro and nanoparticles of copper carbonate produced by various methods was studied in air using TG-DTA techniques. The results of thermal study show that the decomposition of both samples occurs in single step. Also, the TG-DTA analysis of the nanoparticles indicates that the main thermal degradation occurs in the temperature range of 245–315°C. However, microparticles of Cu(OH)2 · CuCO3 decomposed endothermally in the temperature range of 230–330°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Gottfried et al., U.S. Patent 4, 659, 555 (1987)

  2. A.P. Martina, U.S. Patent 6, 228, 191 (2001)

  3. W.L. Masterson, C.N. Hurley, Chemistry: Principles and Reactions, 5th edition (Thomson Learning Inc, USA 2004) 498

    Google Scholar 

  4. M.A. Hiskey, D.L. Naud, U.S. Patent 6, 599, 379 (2003)

    Google Scholar 

  5. G. Hawley, Condensed Chemical Dictionary, Van Nostrand Reinhold Company, 20th edition (1981) ISBN: 0-442-23244-6

  6. C.D. Hodgman, Handbook of Chemistry and Physics, 43th edition (CRC Press, Ohio, 1962)

    Google Scholar 

  7. S.A.A. Mansour, J. Therm. Anal. 42 (1994) 1251

    Article  CAS  Google Scholar 

  8. S.W. Moon, Korean patent no: PCT/KR2001/001329, 2002

  9. N. Koga, J.M. Criado, H. Tanaka. Thermochim. Acta 340–341, 387 (1999)

    Article  Google Scholar 

  10. U. Teipel, Energetic Material (Wiley-VCH Verlag, Germany, 2002)

    Google Scholar 

  11. M. Fathollahi, S.M. Pourmortazavi, S.G. Hosseini, Combust. Flame 138, 304 (2004)

    Article  CAS  Google Scholar 

  12. A. Robertson, U. Erb, G. Palumbo, NanoStruct. Mat. 12, 1035 (1999)

    Article  Google Scholar 

  13. U. Erb, A. M. El-Sherik, G. Palumbo, K.T. Aust, NanoStruct. Mat. 2, 383 (1993)

    Article  CAS  Google Scholar 

  14. J.L. Camalet, J.C. Lacroix, S. Aeiyach, K. Chane-Ching, P.C. Lacaze, Synthetic Metals 93, 133 (1998)

    Article  CAS  Google Scholar 

  15. P.K. Khanna, B.K. Das, Materials Letters 58, 1030 (2004)

    Article  CAS  Google Scholar 

  16. M.I. Schimmel, N.R. de. Tacconi, K. Rajeshwar, J. Electroanal. Chem. 453, 187 (1998)

    Article  CAS  Google Scholar 

  17. Y. Gui, C. Xie, Q. Zhang, M. Hu, J. Yu, Z. Weng, J. Crystal Growth 289, 663 (2006)

    Article  CAS  Google Scholar 

  18. D. Brevet, Y. Mugnier, S. Samreth, Electrochim. Acta 48, 3419 (2003)

    Article  CAS  Google Scholar 

  19. S.G. Hosseini, S.M. Pourmortazavi, S.S. Hajimirsadeghi, Combust. Flame 141, 322 (2005)

    Article  CAS  Google Scholar 

  20. W.M. Shaheen, M.M. Selim, Thermochim. Acta 322, 117 (1998)

    Article  CAS  Google Scholar 

  21. M. Odlyha, N.S. Cohen, G.M. Foster, R.H. West, Thermochim. Acta 365, 53 (2000)

    Article  CAS  Google Scholar 

  22. P.J. Haines, Thermochim. Acta 340–341, 285 (1999)

    Article  Google Scholar 

  23. M. Dinamani, P.V. Kamath, Mater. Res. Bull. 36, 2043 (2001)

    Article  CAS  Google Scholar 

  24. ASTM E967, Standard Practice for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers, American Society for Testing and Materials (Philadelphia, PA, 1997)

  25. D. Dollimore, T.J. Taylor, Thermal Analysis, Proceeding of the Sevent ICTA (Wiley-Heyden, New York, 1982) 636

    Google Scholar 

  26. N.A. Hassan, W.M. Shaheen, M.M. Selim, International Conference on Chemistry and Its Role in Development, April 1997, Mansoura, Egypt (Mansoura University, Egypt, 1997)

    Google Scholar 

  27. H. Henmi, T. Hirayama, S. Shanmugarajah, N. Mitzutani, M. Kato, Thermochim. Acta 96, 145 (1985)

    Article  CAS  Google Scholar 

  28. H. Henmi, T. Hirayama, S. Shanmugarajah, N. Mitzutani, M. Kato, Thermochim. Acta 106, 263 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied M. Pourmortazavi.

About this article

Cite this article

Pourmortazavi, S.M., Kohsari, I. & Hajimirsadeghi, S.S. Electrosynthesis and thermal characterization of basic copper carbonate nanoparticles. cent.eur.j.chem. 7, 74–78 (2009). https://doi.org/10.2478/s11532-008-0094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-008-0094-4

Keywords

Navigation