Skip to main content
Log in

Nuclear magnetic resonance spectroscopic studies of the trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures with water

  • Invited Paper
  • Published:
Central European Journal of Chemistry

Abstract

Tetra-alkyl Phosphonium ionic liquids are phosphonium salts with melting points near room temperature. We report the NMR studies of water-trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures. The proton chemical shifts were used to investigate the intermolecular interactions in mixtures of ionic liquids and water. The OH chemical shifts were found to decrease as the water concentration in the ionic liquid increased, and their rate of change with temperature decreased with water concentration. The CH2 and CH3 chemical shifts were found to move downfield with the increase in temperature, and moved further downfield as water concentration was decreased. The interface of experimental data and the results of quantum calculations suggest a significant binding of phosphonium cations to chloride anion and water molecules. As well, the analysis of the data suggests a possible transformation from cationchloride-water configuration at low water concentrations to cation-water-water at higher water concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Sheldon, Green Chem. 7, 267 (2005).

    Article  CAS  Google Scholar 

  2. R. E. Del Sesto, R. E. Corley, A. Robertson, and J. S. Wilkes, J. Organometallic Chem. 690, 2536 (2005).

    Article  Google Scholar 

  3. C. Wakai, A. Oleinikova, M. Ott and H. Weingartner, J. Phys. Chem. B. 109, 17028 (2005).

    Article  CAS  Google Scholar 

  4. A. Nose, M. Hojo, and T. Ueda, J. Phys. Chem. B 108, 798 (2004).

    Article  CAS  Google Scholar 

  5. K. Mizuno, S. Imafuji, T. Ochi, T. Ohta, and S. Maeda, J. Phys. Chem. B 104, 11001 (2000).

    Article  CAS  Google Scholar 

  6. A. Coccia, P. L. Indovina, F. Podo, and V. Viti, Phys. Chem. Chem. Phys. 7, 30 (1975)

    CAS  Google Scholar 

  7. W. Y. Wen, and H. G. Hertz, Solution Chem. 1, 17 (1972).

    Article  CAS  Google Scholar 

  8. P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. De Souza, J. Dupont, J. Chim. Phys. Phys.-Chim. Biol. 5, 1626 (1998).

    Article  Google Scholar 

  9. J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans., 2133 (1999)

  10. J. Huang, P. Chen, I. Sun, S. P. Wang, Inorg. Chim. Acta 320, 7 (2001).

    Article  CAS  Google Scholar 

  11. A. Mele, C. D. Tran, S. H. De Paoli, Angew. Chem. 115, 4500 (2003).

    Article  Google Scholar 

  12. J. H. Juergen, D. Mertens, A. Doelle, P. Wasserscheid, W. R. Carper, ChemPhysChem 4, 588 (2003).

    Article  Google Scholar 

  13. N. E. Heimer, R. E. Del Sesto, W. R. Carper, Magn. Reson. Chem. 42, 71 (2004).

    Article  CAS  Google Scholar 

  14. J. Antony, D. Mertens, T. Breitenstein, A. Doelle, P. Wasserscheid, W. R. Carper, W. R. Pure Appl. Chem. 76, 255 (2004).

    Article  CAS  Google Scholar 

  15. S. Lin, M. Ding, C. Chang, S. Lue, S. Tetrahedron 60, 9441 (2004).

    Article  CAS  Google Scholar 

  16. L. A. Blanchard, Z. Gu, J. F. Brennecke, J. Phys. Chem. B. 105, 2437 (2001).

    Article  CAS  Google Scholar 

  17. L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 3, 5192 (2001).

    Article  CAS  Google Scholar 

  18. L. N. Mulay, M. Haverbusch, Rev. Sci. Instrum. 35, 756 (1964).

    Article  CAS  Google Scholar 

  19. K. Mizuno, Y. Kimura, H. Morichikab, Y. Nishimurab, S. Shimadab, S. Maedab, S. Imafujib, and T. J. Ochi, J. Mol. Liquids, 85, 139 (2000).

    Article  CAS  Google Scholar 

  20. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople; Gaussian, Inc., Wallingford CT, 2004

    Google Scholar 

  21. R. Ditchfield, Mol. Phys. 27, 789 (1974).

    Article  CAS  Google Scholar 

  22. M. Barfiled, P. J. Fagerness, J. Am. Chem. Soc. 119, 8699 (1977).

    Article  Google Scholar 

  23. J. M. Manaj, D. Maciewska, I. Waver, Magn. Reson. Chem. 38, 482 (2000).

    Article  Google Scholar 

  24. J. Palomar, N. S. Dalal, J. Phys. Chem. B. 106, 4799 (2002).

    Article  CAS  Google Scholar 

  25. N. S. Dalal, K. L. Pierce, J. Palomar, R. Fu, J. Phys. Chem. A. 107, 3471 (2003).

    Article  CAS  Google Scholar 

  26. J. F. Hinton, K. Wolinski In: D. Hadi, (Ed.) Theoretical Treatments of Hydrogen Bonding (John Wiley & Sons, 1997)

  27. J. Palomar, V. R. Ferro, M. A. Gilarranz, and J. J. Rodriguez, J. Phys. Chem. B. 111, 168 (2007).

    Article  CAS  Google Scholar 

  28. GaussView, Version 3.09, R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland; Semichem, Inc., Shawnee Mission, KS, 2003

    Google Scholar 

  29. Y. Yamaguchi, N. Yasutake, and M. Nagaoka, Chem. Phys. Lett. 340, 129 (2001).

    Article  CAS  Google Scholar 

  30. K. Modig, B. G. Pfrommer, and B. Halle, Phys. Rev. Lett. 90, 075502 (2003).

    Article  Google Scholar 

  31. A. Bagno, F. D’Amico, G. Saielli, J. Phys. Chem. B, 110, 23004 (2006).

    Article  CAS  Google Scholar 

  32. M.M. Hoffmann and M.S. Conradi, J. Am. Chem. Soc. 119, 3811 (1997).

    Article  CAS  Google Scholar 

  33. S. Grigoleit, M. Bühl, J. Chem. Theory Comput. 1, 181 (2005).

    Article  CAS  Google Scholar 

  34. M. Bühl, S. Grigoleit, H. Kabrede, F. T. Mauschick, Chem.-Eur. J. 12, 477 (2006).

    Article  Google Scholar 

  35. M. Pavone, G. Brancato, G. Morelli, V. Barone, ChemPhysChem 7, 148 (2006).

    Article  CAS  Google Scholar 

  36. J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J Chem Phys 104, 5497 (1996).

    Article  CAS  Google Scholar 

  37. K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

    Article  CAS  Google Scholar 

  38. T. Köddermann, C. Wertz, A. Heintz, R. ludwig Angew. Chem. Int. Ed 45, 3697 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khashayar Ghandi.

Electronic supplementary material

About this article

Cite this article

Dwan, J., Durant, D. & Ghandi, K. Nuclear magnetic resonance spectroscopic studies of the trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures with water. cent.eur.j.chem. 6, 347–358 (2008). https://doi.org/10.2478/s11532-008-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-008-0034-3

Keywords

Navigation