Skip to main content
Log in

A Study of the Composition, Ionic and Molecular Mobility, and Thermal Properties of Ammonium Pentafluoridozirconate Hydrates

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The effect of hydrate number on the structural changes, thermal properties, and ionic (molecular) mobility character in NH4ZrF5 ⋅ H2O, NH4ZrF5 ⋅ 0.75H2O crystal hydrates have been investigated by the methods of IR, Raman, nuclear magnetic resonance (NMR) (1H, 19F, including 19F MAS), and TG-DTA spectroscopy. Differences in crystal hydrate structures—anion structure, molecular state of water, and O–H⋅⋅⋅F, N–H⋅⋅⋅F hydrogen bond strengths—have been corroborated by IR and Raman spectroscopy data. Isotropic chemical shifts of magnetic inequivalent positions have been determined and attributed to crystal structures of the studied compounds by the method of 19F MAS NMR. It has been established that the removal of water molecules from NH4ZrF5 ⋅ H2O and NH4ZrF5 ⋅ 0.75H2O results in the transformation of chain or layered structures accompanied by the increase of the number of bridge bonds while retaining or increasing the dimensionality of the anion structural motif. According to the 1H NMR data, the NH\(_{4}^{ + }\) cation diffusion in NH4ZrF5 occurs only in the temperature range of 370–520 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Kavun and V. I. Sergienko, Diffusion Mobility and Ion Transport in Crystalline and Amorphous Fluorides of Elements of Group IV and Antimony (III) (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  2. V. Ya. Kavun, I. A. Tkachenko, N. A. Didenko, A. B. Slobodyuk, and V. I. Sergienko, Russ. J. Inorg. Chem. 55, 1179 (2010).

    Article  Google Scholar 

  3. V. Ya. Kavun, V. I. Sergienko, B. N. Chernyshov, N. A. Didenko, N. G. Bakeeva, and L. N. Ignat’eva, Zh. Neorg. Khim. 36, 1004 (1991).

    Google Scholar 

  4. V. Gaument, C. Latouche, D. Avignant, and J. Dupuis, Solid State Ionics 74, 29 (1994).

    Article  Google Scholar 

  5. A. V. Gerasimenko, K. A. Gaivoronskaya, A. B. Slobodyuk, and N. A. Didenko, Z. Anorg. Allg. Chem. 643, 1785 (2017).

    Article  Google Scholar 

  6. N. A. Didenko, K. A. Gaivoronskaya, E. I. Voit, A. V. Gerasimenko, and V. Ya. Kavun, Russ. J. Inorg. Chem. 55, 1339 (2010).

    Article  Google Scholar 

  7. E. I. Voit, N. A. Didenko, K. A. Gayvoronskaya, and A. V. Gerasimenko, Opt. Spectrosc. 121, 229 (2016).

    Article  ADS  Google Scholar 

  8. K. A. Gaivoronskaya, A. V. Gerasimenko, N. A. Di-denko, A. V. Slobodyuk, and V. Ya. Kavun, Russ. J. Inorg. Chem. 58, 189 (2013).

    Article  Google Scholar 

  9. M. M. Godneva and D. L. Motov, Chemistry Subgroups of Titanium. Sulfates, Fluorides, Fluorosulfates from Non-Aqueous Media (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  10. I. V. Tananaev, L. S. Guzeeva, and K. I. Petrov, Izv. Akad. Nauk SSSR, Ser. Khim. 1, 103 (1968).

    Google Scholar 

  11. H. Hull and A. G. Turnbull, J. Inorg. Nucl. Chem. 29, 2903 (1967).

    Article  Google Scholar 

  12. P. W. Smith, R. Stoessiger, and A. G. Turnbull, J. Chem. Soc. A, 3013 (1968).

  13. E. I. Voit, N. V. Didenko, and K. A. Gaivoronskaya, Opt. Spectrosc. 124, 328 (2018).

    Article  ADS  Google Scholar 

  14. B. V. Bukvetskii, A. V. Gerasimenko, and R. L. Davidovich, Koord. Khim. 17, 35 (1991).

    Google Scholar 

  15. A. Zalkin, D. Eimerl, and S. P. Velsko, Acta Crystallogr., C 44, 2050 (1988).

    Article  Google Scholar 

  16. V. V. Tkachev, A. A. Udovenko, R. L. Davidovich, and L. O. Atovmyan, Koord. Khim. 17, 1635 (1991).

    Google Scholar 

  17. K. A. Gaivoronskaya, A. V. Gerasimenko, and N. A. Didenko, J. Struct. Chem. 59, 618 (2018).

    Article  Google Scholar 

  18. A. V. Gerasimenko, V. Ya. Kavun, V. I. Sergienko, and T. F. Antokhina, Russ. J. Coord. Chem. 25, 562 (1999).

    Google Scholar 

  19. B. V. Bukvetskii, A. V. Gerasimenko, and R. L. Davidovich, Koord. Khim. 17, 35 (1991).

    Google Scholar 

  20. V. V. Tkachev, R. L. Davidovich, and L. O. Atovmyan, Koord. Khim. 17, 1485 (1991).

    Google Scholar 

  21. Y. Gao and J. Guery, J. Solid State Chem. 98, 11 (1992).

    Article  ADS  Google Scholar 

  22. D. Avignant, I. Mansouri, R. Chevalier, and J. C. Cousseins, J. Solid State Chem. 38, 121 (1981).

    Article  ADS  Google Scholar 

  23. R. E. Youngman and S. Sen, Solid State NMR 27, 77 (2005).

    Article  Google Scholar 

  24. E. P. Zeer, V. E. Zobov, and O. V. Falaleev, New Effects in NMR of Polycrystals (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  25. B. V. Bukvetskii, A. V. Gerasimenko, and R. L. Davidovich, Koord. Khim. 18, 576 (1992).

    Google Scholar 

  26. C. R. Ross II, M. R. Bauer, R. M. Nielson, and S. C. Abrahams, Acta Crystallogr. 58, 841 (2002).

    Article  Google Scholar 

  27. A. V. Gerasimenko and R. L. Davidovich, Vestn. DVO RAN, No. 5, 17 (2006).

    Google Scholar 

  28. E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, Zh. Strukt. Khim. 41, 255 (2000).

    Google Scholar 

  29. A. Ben Ali, M. Body, M. Leblanc, and V. Maisonneuve, Solid State Sci. 13, 394 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with the financial support of the Ministry of Education and Science of the Russian Federation, Federal Agency for Scientific Organizations, project no. 0265-2018-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Voit.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voit, E.I., Slobodyuk, A.B. & Didenko, N.A. A Study of the Composition, Ionic and Molecular Mobility, and Thermal Properties of Ammonium Pentafluoridozirconate Hydrates. Opt. Spectrosc. 125, 888–897 (2018). https://doi.org/10.1134/S0030400X19020243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19020243

Navigation