Skip to main content
Log in

Dehydrogenation studies of dihydronicotinamide adenine dinucleotide (NADH) with methylene blue in the presence of the copper hexcyanoferrate(II) complex and light

  • Published:
Central European Journal of Chemistry

Abstract

The effects of copper ferrocyanide and light on the dehydrogenation rate of NADH by methylene blue is studied. The results suggest that the dehydrogenation rate of NADH with methylene blue is enhanced by copper ferrocyanide. Light also affects the reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Miller: “A production of amino acids under possible primitive earth condition”, Science, Vol. 117, (1953), pp. 528–529.

    Article  CAS  Google Scholar 

  2. S.L. Miller: “Production of some organic compounds under primitive earth conditions”, J. Am. Chem. Soc., Vol. 77, (1955), pp. 2351–2361.

    Article  CAS  Google Scholar 

  3. C. Sagan and B.N. Khare: “Long wavelength ultraviolet photoproduction of amino acids on the primitive earth”, Science, Vol. 173, (1971), pp. 417–420.

    Article  CAS  Google Scholar 

  4. J. Takahashi, T. Hosokawa, H. Masuda, T. Kaneko, K. Kobayashi, T. Saito and Y. Utsumi: “Abiotic synthesis of amino acids by X-ray irradiation of simple inorganic gases”, Appl. Phys. Lett., Vol. 74, (1999), pp. 877–879.

    Article  CAS  Google Scholar 

  5. J.F. Kasting, A.A. Pavlor and J.L. Siefert: “A coupled ecosystem-climate model for predicting the methane concentration in the archean atmosphere”, Origins Life Evol. Biosphere, Vol. 31, (2001), pp. 271–285.

    Article  CAS  Google Scholar 

  6. J.F. Kasting: “Earth's early atmosphere”, Science, Vol. 259 (1993), pp. 920–926.

    Article  CAS  Google Scholar 

  7. M.T. Beck: “Prebiotic coordination chemistry. The possible role of transition metal complexes in chemical evolution”, In: H. Sigel (Ed.): Metal Ions in Biological Systems, Vol. 7, Marcel Dekker, New York, 1978, p. 1.

    Google Scholar 

  8. Kamaluddin, M. Nath and A. Sharma: “Role of metal ferrocyanides in chemical evolution”, Origins Life Evol. Biosphere, Vol. 24, (1994), pp. 469–477.

    Article  CAS  Google Scholar 

  9. B.B. Tewari and Kamaluddin: “Interaction of o-amniphenol and o-nitrophenol with copper, zinc, molybdenum and chromium ferrocyanides”, J. Colloid and Interface Sci., Vol. 193, (1997), pp. 167–171.

    Article  CAS  Google Scholar 

  10. B.B. Tewari, D. Mohan and Kamaluddin: “Interaction of 2, 4-dinitrophenol and 2,4,6-trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides”, Colloid and Surfaces, Vol. 131, (1998), pp. 89–93.

    Article  CAS  Google Scholar 

  11. L.H. Baetsle, D. Huys and D. Van Deyck: “Ferrocyanide molybdate, A new inorganic ion-exchanger”, J. Inorg. Nucl. Chem., Vol. 28, (1966), pp. 2385–2394.

    Article  Google Scholar 

  12. W.U. Malik, S.K. Srivastava, B.M. Bhaudari and S. Kumar: “Ion-exchange properties of chromium ferrocyanide”, J. Inorg. Nucl. Chem., Vol. 38, (1976), pp. 342–343.

    Article  CAS  Google Scholar 

  13. Y. Hino and S. Minakami: “Electron transport pathway of the NADH dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride”, Biochem. J., Vol. 178, (1979), pp. 323–329.

    CAS  Google Scholar 

  14. J. Moiroux and P.J. Elving: “Mechanistic aspects of the electrochemical oxidation of dihydro nicotinamide adenine dinucleotide (NADH)”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 6533–6538.

    Article  CAS  Google Scholar 

  15. Y.D. Wu and K.N. Houk: “Theoretical evaluation of conformational preferences of NAD+ and NADH: An approach to understanding the steriospecificity of NAD+/NADH-dependent dehydrogenases”, J. Am. Chem. Soc., Vol. 113, (1991), pp. 2353–2358.

    Article  CAS  Google Scholar 

  16. K. Umeda, A. Nakamura and F. Toda: “Investigation on photochemical reduction of NAD+ to NADH in liposomal solution”, Chem. Lett., (1990), pp. 1433–1436.

  17. T. Kajiki, N. Tamura, T. Nabeshima and Y. Yano: “Rate acceleration of the oxidation of an NADH model by flavin with a functionalized flavin receptor in chloroform”, Chem. Lett., (1995), pp. 1063–1064.

  18. M. Murata, M. Kobayashi and S. Kawanishi: “Nonenzymatic reduction of nitroderivatives of a heterocyclic amine IQ by NADH and Cu(II) leads to oxidative DNA damage”, Biochemistry, Vol. 38 (1999), pp. 7624–7629.

    Article  CAS  Google Scholar 

  19. M. Murray and A.M. Butler: “Hepatic biotransformation of parathion: Role of cytochrome p 450 in NADPH- and NADH—meditated microsomal oxidation in vitro”, Chem. Res. Toxicol. Vol. 7, (1994), pp. 792–799.

    Article  CAS  Google Scholar 

  20. T. Iyanagi and K.F. Anan: “One electron oxidation—reduction properties of hepatic NADH—Cytochrome b5 reductase”, Biochemistry, Vol. 23, (1984) pp. 1418–1425.

    Article  CAS  Google Scholar 

  21. H.A. Harper: Reviews of Physiological Chemistry, 14th ed., Lange Medical Publications, Los Altos, California, 1973, p. 100.

    Google Scholar 

  22. D.E. Metzler: Biochemistry, Academic Press, New York, 1977, p. 469.

    Google Scholar 

  23. A. Ciszewski and G. Milczarek: “Electrocatalysis of NADH oxidation with an electropolymerized film of 1,4-bis (3,4-dihydroxyphenyl)-2,3-dimethylbutane”, Anal. Chem., Vol. 72, (2000) pp. 3203–3209.

    Article  CAS  Google Scholar 

  24. T.N. Rao, I. Yagi, T. Miwa, D.A. Tryk and A. Fujishima: “Electrochemical oxidation of NADH at highly boron-doped diamond electrodes”, Anal. Chem., Vol. 71, (1999), pp. 2506–2511.

    Article  CAS  Google Scholar 

  25. G.D. Storrier, K. Takada and H.D. Abrana: “Catechol-pendant terpyridine complexes: electrodeposition studies and electrocatalysis of NADH oxidation”, Inorg. Chem., Vol. 38, (1999), pp. 559–565.

    Article  CAS  Google Scholar 

  26. H.L. Levine and E.T. Kaiser: “Steriospecificity in the oxidation of NADH by flavopapaine”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 343–345.

    Article  CAS  Google Scholar 

  27. B.W. Carlson, L.L. Miller, P. Neta and J. Grodkowski: “Oxidation of NADH involving rate-limiting one electron transfer”, J. Am. Chem. Soc., Vol. 106, (1984), pp. 7233–7239.

    Article  CAS  Google Scholar 

  28. C. Degrand and L.L. Miller: “An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 5728–5732.

    Article  CAS  Google Scholar 

  29. F. Ni, H. Feng, L. Gorton and T.M. Cotton: “Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, mediator for NADH oxidation”, Langmuir, Vol. 6, (1990), pp. 66–73.

    Article  CAS  Google Scholar 

  30. A. Marcinek, J. Rogowski, J. Adamus, J. Gebicki, P. Bednarek and T. Bally “Hydroge-transferre radical cations of NDH model compound 2. Sequential electron-proton addition to NAD+”, J. Phys. Chem. A, Vol. 104, (2000), pp. 718–723.

    Article  CAS  Google Scholar 

  31. A. Marcinek, J. Adamus, J. Gebicki, M.S. Platz and P. Bednarek: “Hydrogen transferred radical cation of NADH model compounds. 3. 1,8-acridinediones”, J. Phys. Chem. A, Vol. 104, (2000), pp. 724–728.

    Article  CAS  Google Scholar 

  32. V. Kourim, J. Rais and B. Million: “Exchange properties of complex cyanides-I”, J. Inorg. Chem., Vol. 26, (1964), pp. 1111–1115.

    CAS  Google Scholar 

  33. W. Hücketl: Structural Chemistry of Inorganic Compounds, Vol. 1, Elsevier, Amsterdam, 1950.

    Google Scholar 

  34. K. Nakamoto, J. Fujita and H. Murata: “Infrared spectra of metallic complexes. V. The infrared spectra of nitro and nitrito complexes”, J. Am. Chem. Soc., Vol. 80, (1958), pp. 4817–4823.

    Article  CAS  Google Scholar 

  35. P. Ratnasamy and A.J. Leonard: “Evolution of chromia”, J. Phys. Chem., Vol. 76, (1976), pp. 1938–1843.

    Google Scholar 

  36. B.B. Tewari and Kamaluddin: “Photo-sensitized oxidation of diphenylamine using nickel ferrocyanide and its relevance to chemical evolution”, In: Proceedings of Ninth National Space Science Symposium (NSSS-96), Osmania University, Hyderabad, India, 1996, p. 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tewari, B.B. Dehydrogenation studies of dihydronicotinamide adenine dinucleotide (NADH) with methylene blue in the presence of the copper hexcyanoferrate(II) complex and light. cent.eur.j.chem. 3, 441–451 (2005). https://doi.org/10.2478/BF02479274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02479274

Keywords

Navigation