Skip to main content
Log in

Modeling transport through single-molecule junctions

  • Published:
Central European Journal of Physics

Abstract

Non-equilibrium Green's functions (NEGF) formalism combined with extended Hückel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. The analyzed molecular complex is composed of the asymmetric 1,4-Bis((2′-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitrobenzene molecule symmetrically coupled to two gold electrodes. Owing to this model, the accurate values of the current flowing through such junctions can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for the molecular complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson and C. P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol. 109(7), (1998), pp. 2874–2882

    Article  ADS  Google Scholar 

  2. M.A. Reed, C. Zhou, M.R. Deshpande, C.J. Muller, T.P. Burgin, L. Jones II and J.M. Tour: “The electrical measurement of molecular junctions”, Ann. N.Y. Acad. Sci., Vol. 852, (1998), pp. 133–144.

    Article  Google Scholar 

  3. C. Kergueris, J.-P. Bourgoin, D. Esteve, C. Urbina, M. Magoga and C. Joachim: “Electron transport through a metal-molecule-metal junction”, Phys. Rev. B, Vol. 59(19), (1999), pp. 12505–12513.

    Article  ADS  Google Scholar 

  4. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor and H.V. Löhneysen: “Driving current through single organic molecules”, Phys. Rev. Lett., Vol. 88(17), (2002), pp. 176804.

    Article  ADS  Google Scholar 

  5. B. Xu and N.J. Tao: “Measurement of single-moleculer resistance by repeated formation of molecular junctions”, Science, Vol. 301, (2003), pp. 1221–1223.

    Article  ADS  Google Scholar 

  6. Y. Wada: “A prospect for single molecule information processing devices”, Pure Appl. Chem., Vol. 71(11), (1999), pp. 2055–2066.

    MathSciNet  Google Scholar 

  7. C. Joachim, J.K. Gimzewski and A. Aviram: “Electronics using hybrid-molecular and mono-molecular devices”, Nature, Vol. 408, (2000), pp. 541–548.

    Article  ADS  Google Scholar 

  8. A. Nitzan and M.A. Ratner: “Electron transport in molecular wire junctions”, Science, Vol. 300, (2003), pp. 1384–1389.

    Article  ADS  Google Scholar 

  9. J.R. Heath and M.A. Ratner: “Molecular electronics”, Phys. Today, Vol. 56(5), (2003), pp. 43–49.

    Google Scholar 

  10. A. H. Flood, J.F. Stoddart, D.W. Steuerman and J.R. Health: “Whence molecular electronics?”Science, Vol. 306, (2004), pp. 2055–2056.

    Article  Google Scholar 

  11. S.E. Lyshevski:Nano- and MicroElectromechanical Systems: Fundamentals of Nano-and MicroEngineering, CRC Press, Boca Raton, FL, 2005.

    Google Scholar 

  12. S.T. Pantelides, M. Di Ventra and N.D. Lang: “Molecular electronics by the numbers”, Physica B, Vol. 296, (2001), pp. 72–77.

    Article  ADS  Google Scholar 

  13. E.G. Emberly and G. Kirczenow: “Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts”, Phys. Rev. B, Vol. 58(16), (1998), pp. 10911–10920.

    Article  ADS  Google Scholar 

  14. L.E. Hall, J.R. Reimers, N.S. Hush and K. Silvebrook: “Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires”, J. Chem. Phys., Vol. 112(3), (2000), pp. 1510–1521.

    Article  ADS  Google Scholar 

  15. A. Onipko, Y. Klymenko and L. Malysheva: “Conductance of molecular wires: analytical modeling of connection to leads”, Phys. Rev. B Vol. 62(15), (2000), pp. 10480–10493.

    Article  ADS  Google Scholar 

  16. S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner: “The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab initio molecular description”, J. Chem. Phys. Vol. 111(15), (1999), pp. 6997–7002.

    Article  ADS  Google Scholar 

  17. J.M. Seminario, A.G. Zacarias and J.M. Tour: “Theoretical study of a molecular resonant diode”, J. Am. Chem. Soc., Vol. 122, (2000), pp. 3015–3020.

    Article  Google Scholar 

  18. P.S. Damle, A.W. Ghosh and S. Datta: “Unified description of molecular conduction: from molecules to metallic wires”, Phys. Rev. B, Vol. 64, (2001), pp. 201–403.

    Article  Google Scholar 

  19. Y. Xue, S. Datta and M.A. Ratner: “First-principles based matrix Green's function approach to molecular electronic devices: general formalism”, Chem. Phys., Vol. 281, (2002), pp. 151–170.

    Article  Google Scholar 

  20. J. Taylor, M. Brandbyge and K. Stokbro: “Theory of rectification of Tour wires: the role of electrode coupling”, Phys. Rev. Lett., Vol. 89(13), (2002), pp. 138301.

    Article  ADS  Google Scholar 

  21. J. Heurich, J.C. Cuevas, W. Wenzel and G. Schön: “Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels”, Phys. Rev. Lett., Vol. 88(25), (2002), pp. 256803.

    Article  ADS  Google Scholar 

  22. A.-P. Jauho, N.S. Wingreen and Y. Meir: “Time-dependent transport in interacting and noninteracting resonant-tunneling systems”, Phys. Rev. B, Vol. 50, (1994), pp. 5528–5544.

    Article  ADS  Google Scholar 

  23. F. Zahid, M. Paulsson and S. Datta: “Electrical Conduction through Molecules”, In: H. Morkoc (Ed.):Advanced Semiconductors and Organic Nano-Techniques, Academic Press, 2003.

  24. HyperChem 5.1 Pro for Windows, Hypercube Irc., 1997.

  25. A. Ulman: “Formation and structure of self-assembled monolayers”, Chem. Rev., Vol. 96(4), (1996), pp. 1533–1554.

    Article  Google Scholar 

  26. K. Walczak: “The role of quantum interference in determining transport properties of molecular bridges”, Cent. Eur. J. Chem., Vol. 2(3), (2004), pp. 524–533.

    Article  Google Scholar 

  27. G.C. Liang, A.W. Ghosh, M. Paulsson and S. Datta: “Electrostatic potential profiles of molecular conductors”, Phys. Rev. B, Vol. 69(11), (2004), pp. 115302.

    Article  ADS  Google Scholar 

  28. K. Walczak: “Charging effects in biased molecular devices”, Physica E, Vol. 25(4), (2005), pp. 530–534.

    Article  ADS  Google Scholar 

  29. M. Di Ventra, S.T. Pantelides and N.D. Lang: “Current-induced forces in molecular wires”, Phys. Rev. Lett., Vol. 88(4), (2002), pp. 046801.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Walczak, K., Edward Lyshevski, S. Modeling transport through single-molecule junctions. centr.eur.j.phys. 3, 555–563 (2005). https://doi.org/10.2478/BF02475612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475612

Keywords

PACS (2003)

Navigation