Skip to main content
Log in

The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

An Erratum to this article was published on 29 December 2017

This article has been updated

Abstract

We generalize the classical mean value theorem of differential calculus by allowing the use of a Caputo-type fractional derivative instead of the commonly used first-order derivative. Similarly, we generalize the classical mean value theorem for integrals by allowing the corresponding fractional integral, viz. the Riemann-Liouville operator, instead of a classical (firstorder) integral. As an application of the former result we then prove a uniqueness theorem for initial value problems involving Caputo-type fractional differential operators. This theorem generalizes the classical Nagumo theorem for first-order differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. D. Băleanu, O.G. Mustafa, D. O’Regan, A Nagumo-like uniqueness theorem for fractional differential equations. J. Phys. A: Math. Theor. 44 (2011), 392003.

    Article  Google Scholar 

  2. L. Brand, Advanced Calculus. J. Wiley & Sons, New York (1955).

    MATH  Google Scholar 

  3. J.B. Diaz, W.L. Walter, On uniqueness theorems for ordinary differential equations and for partial differential equations of hyperbolic type. Transact. Amer. Math. Soc. 96 (1960), 90–100.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Diethelm, On the separation of solutions of fractional differential equations. Fract. Calc. Appl. Anal. 11 (2008), 259–268; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  5. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010); http://www.springerlink.com/content/978-3-642-14573-5

    Book  MATH  Google Scholar 

  6. K. Diethelm, N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Diethelm, N.J. Ford, Volterra integral equations and fractional calculus: Do neighbouring solutions intersect? J. Integral Equations Appl. 24 (2012), In press.

  8. N.J. Ford, M.L. Morgado, Fractional boundary value problems: Analysis and numerical methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 554–567; DOI: 10.2478/s13540-011-0034-4; http://www.springerlink.com/content/1311-0454/14/4/

    MathSciNet  Google Scholar 

  9. H. Heuser, Lehrbuch der Analysis, Teil 1, 10th ed. Teubner, Stuttgart (1993).

    MATH  Google Scholar 

  10. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  11. V. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal., Theory Methods Appl. 71 (2009), 2886–2889.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Nagumo, Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung. Jap. J. Math. 3 (1926), 107–112.

    Google Scholar 

  13. Z.M. Odibat, N.T. Shawagfeh, Generalized Taylor’s formula. Appl. Math. Comput. 186 (2007), 286–293.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon (1993).

    MATH  Google Scholar 

  15. J.H. Williamson, Lebesgue Integration, Holt, Rinehart and Winston, New York (1962).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Diethelm.

Additional information

Dedicated to the memory of my teacher, Professor Dr. Helmut Braß

About this article

Cite this article

Diethelm, K. The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus. fcaa 15, 304–313 (2012). https://doi.org/10.2478/s13540-012-0022-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0022-3

MSC 2010

Key Words and Phrases

Navigation