Materials Science-Poland

, Volume 31, Issue 2, pp 288–297 | Cite as

Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

  • U. Bielecka
  • P. Lutsyk
  • M. Nyk
  • K. Janus
  • M. Samoc
  • W. Bartkowiak
  • S. Nespurek
Article
  • 104 Downloads

Abstract

Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×10−4 cm2/Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.

Keywords

organic field effect transistor quantum dots poly(3-hexylthiophene) hybrid material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Braga D., Horowitz G., Adv. Mater. 21/14–15 (2009), 1473.CrossRefGoogle Scholar
  2. [2]
    Wen Y.G., Liu Y.Q., Guo Y.L., Yu G., Hu W.P., Chem. Rev. 111/5 (2011), 3358.CrossRefGoogle Scholar
  3. [3]
    Ortiz R.P., Facchetti A., Marks T.J., Chem. Rev. 110/1 (2010) 205.CrossRefGoogle Scholar
  4. [4]
    Salleo A., Mater. Today 10/3 (2007) 38.CrossRefGoogle Scholar
  5. [5]
    Kruszynska M., Knipper M., Kolny-Olesiak J., Borchert H., Parisi J., Thin Solid Films 519/21 (2011) 7374.CrossRefGoogle Scholar
  6. [6]
    Farva U., Park C., Sol. Energy Mater. Sol. Cells 94/2 (2010) 303.CrossRefGoogle Scholar
  7. [7]
    Sharma S.N., Kumar U., Singh V.N., Mehta B.R., Kakkar R., Thin Solid Films 519/3 (2010) 1202.CrossRefGoogle Scholar
  8. [8]
    Aldakov D., Chandezon F., De Bettignies R., Firon M., Reiss P., Pron A., Eur. Phys. J.-Appl. Phys 36/3 (2006) 261.CrossRefGoogle Scholar
  9. [9]
    Choi H.J., Yang J.K., Park H.H., Thin Solid Films 494/1–2 (2006) 207.CrossRefGoogle Scholar
  10. [10]
    Liu I.S. et al., J. Mater. Chem. 18/6 (2008) 675.CrossRefGoogle Scholar
  11. [11]
    Seo J., Kim W.J., Kim S.J., Lee K.S., Cartwright A.N., Prasad P.N., Appl. Phys. Lett. 94/13 (2009) 133302.CrossRefGoogle Scholar
  12. [12]
    Li Q.W., Sun B.Q., Kinloch I.A., Zhi D., Sirringhaus H., Windle A.H., Chem. Mat. 18/1 (2006) 164.CrossRefGoogle Scholar
  13. [13]
    Milliron D.J., Alivisatos A.P., Pitois C., Edder C., Frechet J.M.J., Adv. Mater. 15/1 (2003) 58.CrossRefGoogle Scholar
  14. [14]
    Heinemann M.D. et al., Adv. Funct. Mater. 19/23 (2009) 3788.CrossRefGoogle Scholar
  15. [15]
    Choi S.H. et al., J. Photochem. Photobiol. A-Chem. 179/1–2 (2006) 135.CrossRefGoogle Scholar
  16. [16]
    Choi H.J., Yang J.K., Yoon S., Park H.H., Appl. Surf. Sci. 244/1–4 (2005) 92.CrossRefGoogle Scholar
  17. [17]
    Xu J. et al., J. Am. Chem. Soc. 129/42 (2007) 12828.CrossRefGoogle Scholar
  18. [18]
    Choudhury K.R., Samoc M., Patra A., Prasad P.N., J. Phys. Chem. B 108/5 (2004) 1556.CrossRefGoogle Scholar
  19. [19]
    Nishioka M., Chen Y., Goldman A.M., Appl. Phys. Lett. 92/15 (2008) 153308.CrossRefGoogle Scholar
  20. [20]
    Topp K. et al., J. Phys. Chem. A 114/11 (2010) 3981.CrossRefGoogle Scholar
  21. [21]
    Xu Z.X., Roy V.A.L., Stallinga P., Muccini M., Toffanin S., Xiang H.F., Che C.M., Appl. Phys. Lett. 90/22 (2007) 223509.CrossRefGoogle Scholar
  22. [22]
    Remashan K., Choi Y.S., Park S.J., Jang J.H., J. Electrochem. Soc. 157/12 (2010) II1121.Google Scholar
  23. [23]
    Remashan K., Choi Y.S., Park S.J., Jang J.H., Jpn. J. Appl. Phys. 50/4 (2011) 04DJ08.CrossRefGoogle Scholar
  24. [24]
    Chiu M.Y., Chen C.C., Sheu J.T., Wei K.H., Org. Electron. 10/5 (2009) 769.CrossRefGoogle Scholar
  25. [25]
    Nyk M., Palewska K., Kepinski L., Wilk K.A., Strek W., Samoc M., J. Lumines. 130/12 (2010) 2487.CrossRefGoogle Scholar
  26. [26]
    Bielecka U., Lutsyk P., Janus K., Sworakowski J., Bartkowiak W., Org. Electron. 12/11 (2011) 1768.CrossRefGoogle Scholar
  27. [27]
    Sze S., Ng K. (Eds.), Physics of Semiconductor Devices, Wiley & Sons Ltd., New York, 1997.Google Scholar
  28. [28]
    Stallinga P. (Ed.), Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons Ltd., Chichester, UK, 2009.Google Scholar
  29. [29]
    Xu W.T., Rhee S.W., J. Mater. Chem. 19/29 (2009) 5250.CrossRefGoogle Scholar
  30. [30]
    Ng K. (Ed.), Compliete guide to semiconductor devices, John Wiley & Sons Ltd., New York, 2002.Google Scholar
  31. [31]
    Scheinert S., Paasch G., Schrodner M., Roth H.K., Sensfuss S., Doll T., J. Appl. Phys. 92/1 (2002) 330.CrossRefGoogle Scholar
  32. [32]
    Arkhipov V.I., Heremans P., Emelianova E.V., Bassler H., Phys. Rev. B 71/4 (2005) 045214.CrossRefGoogle Scholar
  33. [33]
    Chen C.C., Chiu M.Y., Sheu J.T., Wei K.H., Appl. Phys. Lett. 92/14 (2008) 143105.CrossRefGoogle Scholar
  34. [34]
    Huynh W.U., Dittmer J.J., Libby W.C., Whiting G.L., Alivisatos A.P., Adv. Funct. Mater. 13/1 (2003) 73.CrossRefGoogle Scholar
  35. [35]
    Lee H.J. et al., J. Phys. Chem. C 112/30 (2008) 11600.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • U. Bielecka
    • 1
    • 3
  • P. Lutsyk
    • 1
    • 2
  • M. Nyk
    • 1
  • K. Janus
    • 1
  • M. Samoc
    • 1
  • W. Bartkowiak
    • 1
  • S. Nespurek
    • 3
  1. 1.Institute of Physical and Theoretical Chemistry, Chemistry DepartmentWroclaw University of TechnologyWroclawPoland
  2. 2.Institute of PhysicsNational Academy of Science of UkraineKyivUkraine
  3. 3.Institute of Macromolecular Chemistry AS CRPrague 6Czech Republic

Personalised recommendations