Skip to main content
Log in

2DG enhances the susceptibility of breast cancer cells to doxorubicin

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

2DG causes cytotoxicity in cancer cells by disrupting thiol metabolism while Doxorubicin (DOX) induces cytotoxicity in tumor cells by generating reactive oxygen species (ROS). Here we examined the combined cytotoxic action of 2DG and DOX in rapidly dividing T47D breast cancer cells vs. slowly growing MCF-7 breast cancer cells. T47D cells exposed to the combination of 2DG/DOX significantly decreased cell survival compared to controls, while 2DG/DOX had no effect on MCF-7 cells. 2DG/DOX also disrupted the oxidant status of T47D treated cells, decreased intracellular total glutathione and increased glutathione disulfide (%GSSG) compared to MCF-7 cells. Lipid peroxidation increased in T47D cells treated with 2DG and/or DOX, but not in MCF-7 cells. T47D cells were significantly protected by NAC, indicating that the combined treatment exerts its action by increasing ROS production and disrupting antioxidant stores. When we inhibited glutathione synthesis with BSO, T47D cells became more sensitive to 2DG/DOX-induced cytotoxicity, but NAC significantly reversed this cytotoxic effect. Finally, 2DG/DOX, and BSO significantly increased the %GSSG in T47D cells, an effect which was also reversed by NAC. Our results suggest that exposure of rapidly dividing breast cancer cells to 2DG/DOX enhances cytotoxicity via oxidative stress and via disruptions to thiol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber G. Enzymology of cancer cells (second of two parts), N. Engl. J. Med., 1977, 296, 541–551

    Article  PubMed  CAS  Google Scholar 

  2. Warburg O. On the Origin of Cancer Cells, Science, 1956, 123, 309–314

    Article  PubMed  CAS  Google Scholar 

  3. Weber G. Enzymology of cancer cells (first of two parts), N. Engl. J. Med., 1977, 296, 486–492

    Article  PubMed  CAS  Google Scholar 

  4. Lee Y.J., Galoforo S.S., Berns C.M., Chen J.C., Davis B.H., Sim J.E., et al. Glucose Deprivation-induced Cytotoxicity and Alterations in Mitogen-activated Protein Kinase Activation Are Mediated by Oxidative Stress in Multidrug-resistant Human Breast Carcinoma Cells, J. Biol. Chem., 1998, 273, 5294–5299

    Article  PubMed  CAS  Google Scholar 

  5. Spitz D.R., Sim J.E., Ridnour L.A., Galoforo S.S., Lee Y.J. Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism?, Ann. N. Y. Acad Sci., 2000, 899, 349–362

    Article  PubMed  CAS  Google Scholar 

  6. Galoforo S.S., Berns C.M., Erdos G., Corry P.M., Lee Y.J. Hypoglycemia-induced AP-1 transcription factor and basic fibroblast growth factor gene expression in multidrug resistant human breast carcinoma MCF-7/ADR cells, Mol. Cell. Biochem., 1996, 155, 163–171

    Article  PubMed  CAS  Google Scholar 

  7. Liu X., Gupta A.K., Corry P.M., Lee Y.J. Hypoglycemia-induced c-Jun Phosphorylation Is Mediated by c-Jun N-terminal Kinase 1 and Lyn Kinase in Drug-resistant Human Breast Carcinoma MCF-7/ADR Cells, J. Biol. Chem., 1997, 272, 11690–11693

    Article  PubMed  CAS  Google Scholar 

  8. Wick A.N., Drury D.R., Nakada H.I., Wolfe J.B. Localization of The Primary Metabolic Block Produced by 2-Deoxyglucose, J. Biol. Chem., 1957, 224, 963–969

    PubMed  CAS  Google Scholar 

  9. Kern K., Norton J. Inhibition of established rat fibrosarcoma growth by the glucose antagonist 2-deoxy-D-glucose, Surgery, 1987, 102, 380–385

    PubMed  CAS  Google Scholar 

  10. Dwarkanath B.S., Zolzer F., Chandana S., Bauch T., Adhikari J.S., Muller W.U., et al. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines, Int. J. Radiat. Oncol. Biol. Phys., 2001, 50, 1051–1061

    Article  PubMed  CAS  Google Scholar 

  11. Lin X., Zhang F., Bradbury C.M., Kaushal A., Li L., Spitz D.R., et al. 2-Deoxy-D-Glucose-induced Cytotoxicity and Radiosensitization in Tumor Cells Is Mediated via Disruptions in Thiol Metabolism, Cancer Res., 2003, 63, 3413–3417

    PubMed  CAS  Google Scholar 

  12. Jain V.K., Kalia V.K., Sharma R., Maharajan V., Menon M. Effects of 2-deoxy-D-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells, Int. J. Radiat. Oncol. Biol. Phys., 1985, 11, 943–950

    PubMed  CAS  Google Scholar 

  13. Burger C., Wick M., Brusselbach S., Muller R. Differential induction of ‘metabolic genes’ after mitogen stimulation and during normal cell cycle progression, J. Cell. Sci., 1994, 107, 241–252

    PubMed  Google Scholar 

  14. Perez J.X., Roig T., Manzano A., Dalmau M., Boada J., Ventura F., et al. Overexpression of fructose 2,6-bisphosphatase decreases glycolysis and delays cell cycle progression, Am. J. Physiol. Cell Physiol., 2000, 279, C1359–C1365

    PubMed  CAS  Google Scholar 

  15. Takanashi S., Bachur N.R. Adriamycin metabolism in man. Evidence from urinary metabolites, Drug Metab. Dispos., 1976, 4, 79–87

    PubMed  CAS  Google Scholar 

  16. Quiles J.L., Huertas J.R., Battino M., Mataix J., Ramírez-Tortosa M.C. Antioxidant nutrients and adriamycin toxicity, Toxicology, 2002, 180, 79–95

    Article  PubMed  CAS  Google Scholar 

  17. Kong Q., Lillehei K.O. Antioxidant inhibitors for cancer therapy, Med. Hypotheses, 1998, 51, 405–409

    Article  PubMed  CAS  Google Scholar 

  18. Gille L., Nohl H. Analyses of the Molecular Mechanism of Adriamycin-Induced Cardiotoxicity, Free Radic. Biol. Med., 1997, 23, 775–782

    Article  PubMed  CAS  Google Scholar 

  19. Zhou S., Starkov A., Froberg M.K., Leino R.L., Wallace K.B. Cumulative and Irreversible Cardiac Mitochondrial Dysfunction Induced by Doxorubicin, Cancer Res, 2001, 61, 771–777

    PubMed  CAS  Google Scholar 

  20. Shenoy M.A., Singh B.B. Non-nitro Radiation Sensitizers, Int. J. Radiat. Biol., 1985, 48, 315–326

    Article  CAS  Google Scholar 

  21. Ahmad I.M., Abdalla M.Y., Aykin-Burns N., Simons A.L., Oberley L.W., Domann F.E., et al. 2-Deoxyglucose combined with wild-type p53 overexpression enhances cytotoxicity in human prostate cancer cells via oxidative stress, Free Radic. Biol. Med., 2008, 44, 826–834

    Article  PubMed  CAS  Google Scholar 

  22. Aykin-burns N., Ahmad I.M., Zhu Y., Oberley L.W., Spitz D.R. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation, Biochem. J., 2009, 418, 29–37

    Article  PubMed  CAS  Google Scholar 

  23. Griffith O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, 106, 207–212

    Article  PubMed  CAS  Google Scholar 

  24. Anderson M. Determination of glutathione and glutathione disulfide in biological samples, Meth. Enzymol., 1985, 113, 548–554

    Article  PubMed  CAS  Google Scholar 

  25. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Meth., 1983, 65, 55–63

    Article  CAS  Google Scholar 

  26. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, 95, 351–358

    Article  PubMed  CAS  Google Scholar 

  27. Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radic. Biol. Med., 2001, 30, 1191–1212

    Article  PubMed  CAS  Google Scholar 

  28. Sies H., Cadenas E., Symons M.C.R., Scott G. Oxidative Stress: Damage to Intact Cells and Organs, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1985, 311, 617–631

    Article  PubMed  CAS  Google Scholar 

  29. Oberley LW., Buettner G.R. Role of Superoxide Dismutase in Cancer: A Review, Cancer Res., 1979, 39, 1141–1149

    PubMed  CAS  Google Scholar 

  30. Suzuki M., O’Dea J.D., Suzuki T., Agar N.S. 2-deoxyglucose as a substrate for glutathione regeneration in human and ruminant red blood cells, Comp. Biochem. Physiol. Part B: Bioch. Mol. Biol., 1983, 75, 195–197

    Article  CAS  Google Scholar 

  31. Landau B.R., Lubs H.A. Animal responses to 2-Deoxy-d-Glucose administration, Proc. Soc. Exp. Biol. Med., 1958, 99, 124–127

    PubMed  CAS  Google Scholar 

  32. Andringa K.K., Coleman MC., Aykin-Burns N., Hitchler M.J., Walsh S.A., Domann F.E., et al. Inhibition of Glutamate Cysteine Ligase Activity Sensitizes Human Breast Cancer Cells to the Toxicity of 2-Deoxy-D-Glucose, Cancer Res., 2006, 66, 1605–1610

    Article  PubMed  CAS  Google Scholar 

  33. Mohanti B.K., Rath G.K., Anantha N., Kannan V., Das B.S., Chandramouli B.A.R, et al. Improving cancer radiotherapy with 2-deoxy—glucose: phase I/II clinical trials on human cerebral gliomas, Int. J. Radiat. Oncol., Biol., Phys., 1996, 35, 103–111

    CAS  Google Scholar 

  34. Simons A.L., Ahmad I.M., Mattson D.M., Dornfeld K.J., Spitz D.R. 2-Deoxy-D-Glucose Combined with Cisplatin Enhances Cytotoxicity via Metabolic Oxidative Stress in Human Head and Neck Cancer Cells, Cancer Res., 2007, 67, 3364–3370

    Article  PubMed  CAS  Google Scholar 

  35. Singh G., Lakkis CL., Laucirica R., Epner D.E. Regulation of prostate cancer cell division by glucose, J. Cell. Physiol., 1999, 180, 431–438

    Article  PubMed  CAS  Google Scholar 

  36. Lo C-h., Cristofalo V.J., Morris H.P., Weinhouse S. Studies on Respiration and Glycolysis in Transplanted Hepatic Tumors of the Rat, Cancer Res., 1968, 28, 1–10

    PubMed  CAS  Google Scholar 

  37. Wang T., Marquardt C., Foker J. Aerobic glycolysis during lymphocyte proliferation, Nature, 1976, 261, 702–705

    Article  PubMed  CAS  Google Scholar 

  38. Szatrowski T.P., Nathan C.F. Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells, Cancer Res., 1991, 51, 794–798

    PubMed  CAS  Google Scholar 

  39. Maschek G., Savaraj N., Priebe W., Braunschweiger P., Hamilton K., Tidmarsh G.F., et al. 2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers In Vivo, Cancer Res., 2004, 64, 31–34

    Article  PubMed  CAS  Google Scholar 

  40. Wold L.E., Aberle N.S., Ren J. Doxorubicin induces cardiomyocyte dysfunction via a p38 MAP kinase-dependent oxidative stress mechanism, Cancer Detect. Prev., 2005, 29, 294–299

    Article  PubMed  CAS  Google Scholar 

  41. Moadel R., Nguyen A., Lin E., Lu P., Mani J., Blaufox M.D., et al. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer, Breast Cancer Res., 2003, 5, R199–R205

    Article  PubMed  CAS  Google Scholar 

  42. Tyagi A.K., Singh R.P., Agarwal C., Chan D.C.F., Agarwal R. Silibinin Strongly Synergizes Human Prostate Carcinoma DU145 Cells to Doxorubicininduced Growth Inhibition, G2-M Arrest, and Apoptosis, Clin. Cancer Res., 2002, 8, 3512–3519

    PubMed  CAS  Google Scholar 

  43. Bailey H.H. L-S,R-buthionine sulfoximine: historical development and clinical issues, Chem. Biol. Interact., 1998, 111-112, 239–254

    Article  PubMed  CAS  Google Scholar 

  44. Hales B.F., Brown H. The effect of in vivo glutathione depletion with buthionine sulfoximine on rat embryo development, Teratology, 1991, 44, 251–257

    Article  PubMed  CAS  Google Scholar 

  45. Meister A., Anderson M.E. Glutathione, Annu. Rev. Biochem., 1983, 52, 711–760

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe T., Sagisaka H., Arakawa S., Shibaya Y., Watanabe M., Igarashi I,, et al. A Novel Model of Continuous Depletion of Glutathione in Mice Treated With L-Buthionine (S,R)-Sulfoximine, J. Toxicol. Sci., 2003, 28, 455–469

    Article  PubMed  CAS  Google Scholar 

  47. Mattson D.M., Ahmad I.M., Dayal D., Parsons A.D., Aykin-Burns N., Li L., et al. Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanism, Free Radic. Biol. Med., 2009, 46, 232–237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Y. Abdalla.

About this article

Cite this article

Ahmad, I.M., Mustafa, E.H., Mustafa, N.H. et al. 2DG enhances the susceptibility of breast cancer cells to doxorubicin. cent.eur.j.biol. 5, 739–748 (2010). https://doi.org/10.2478/s11535-010-0060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-010-0060-y

Keywords

Navigation