Skip to main content

Advertisement

Log in

On the quantitative importance of heterotrophic microplankton in the northern German Wadden Sea

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

To assess the importance of heterotrophic microplankton in the Wadden Sea, seasonal distribution and biomass of the main subgroups, that is, heterotrophic dinoflagellates, (separated into thecate and athecate forms), tintinnids, and aloricate ciliates, were studied in 1989 and 1990 in a total of six surveys covering the whole area of the northern German Wadden Sea. Heterotrophic microplankton biomass exhibited high spatial and temporal variation, ranging from 0 μg Cl−1 to 66 μg Cl−1, with maximum concentrations in spring., Mean stocks were lowest in winter (1.6 μg Cl−1) and highest in spring (11.7 μg Cl−1); intermediate concentrations were found in summer (8.5 μg Cl−1). In winter, the heterotrophic microplankton was dominated by tintinnids. In spring and summer, aloricate ciliates and dinoflagellates made up the largest part of the biomass. A pronounced feature was a shift within the dinoprotist group from athecate to thecate forms in summer. In spring, maxima of athecate dinoflagellate carbon were associated with blooms ofPhaeocystis globosa, indicating a close trophic relationship. From rough estimates of the daily grazing potential, based on microheterotrophic biomass and conversion factors from the literature, it may be concluded that heterotrophic microplankton temporarily share a main role in the transfer of food and energy to higher trophic levels within the pelagic system of the Wadden Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agatha, S. andJ. C., Riedel-Lorjé. 1997. Morphology, infraciliature and ecology of halteriids and strombidiids (Ciliophora, Oligotrichaea) from coastal brackish water basins.Archiv für Protistenkunde 148:445–459.

    Google Scholar 

  • Albright, L. J., E. B. Sherr, B. F. Sherr, andR. D. Fallon. 1987. Grazing of ciliated protozoa on free and particle-attached bacteria.Marine Ecology Progress Series 38:125–129.

    Article  Google Scholar 

  • Andersen, P. andH. M. Sørensen. 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters.Marine Ecology Progress Series 33:99–109.

    Article  Google Scholar 

  • Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn, andN. J. P. Owens. 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters.Marine Biology 93:581–590.

    Article  CAS  Google Scholar 

  • de Jonge, V. D. andH. Postma. 1974. Phosphorus compounds in the Dutch Wadden Sea.Netherlands Journal of Sea Research 8:139–153.

    Article  Google Scholar 

  • Dick, S. andW. Schönfeld. 1996. Water transport and mixing in the North Frisian Wadden Sea—Results of numerical investigations.Deutsche Hydrographische Zeitschrift 48:27–48.

    Article  Google Scholar 

  • Edler, L. 1979. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and chlorophyll.The Baltic Marine Biologist Publ No. 5. Institute of Marine Research. Lysekill, Sweden.

    Google Scholar 

  • Fenchel, T. 1987. Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists, Springer, New York.

    Google Scholar 

  • Froneman, P. W., R. Perisinotto, andC. D., McOuaid. 1996. Dynamics of microplankton communities at the ice edge zone of the Lazarev Sea during a summer drogue study.Journal of Plankton Research 18:1455–1470.

    Article  Google Scholar 

  • Hagmeier, E. 1978. Variations in phytoplankton near Helgoland.Raports et Proces-Verbaux des Reunions Conseil International pour L Exploration de la Mer 172:361–363.

    Google Scholar 

  • Hansen, P. J. 1992. Prey size selection, feeding rates, and growth dynamics of heterotrophic dinoflagellates with special emphasis onGyrodinium spirale.Marine Biology 114:327–334.

    Article  Google Scholar 

  • Hansen, B., P. K. Bjornsen, andP. J. Hansen. 1994. The size ratio between planktonic predators and their prey.Limnology and Oceanography 39:395–403.

    Google Scholar 

  • Hansen, F. C., 1995. Trophic interactions between zooplankton andPhaeocystis cf. globosa.Helgoländer Meeresuntersuchungen 49: 283–293.

    Article  Google Scholar 

  • Hesse, K.-J., U. Hentschke, andU. Brockmann. 1992. A synoptic study of nutrients and phytoplankton characteristics in the German Wadden Sea with respect to coastal eutrophication, p. 45–53.In G. Colombo, I. Ferrari, V. U. Ceccherelli, and R. Rossi (eds.), Marine Eutrophication and Population Dynamics. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Hesse, K. J., Z. L. Liu, andK. Schaumann. 1989. Phytoplankton and fronts in the German Bight, p. 187–196.In J. D. Ros (ed.), Topics in Marine Biology. Proceedings 22nd European Marine Biology Symposium,Scientia Marina 53 (2–3) Instituto Ciencias del Mar, Barcelona, Spain.

    Google Scholar 

  • Hesse, K.-J., U. Tillmann, S. Nehring, andU. Brockmann. 1995a. Factors controlling phytoplankton distribution in coastal waters in the German Bight (North Sea), p. 11–22.In A. Eleftheriou (ed.), Biology and Ecology of Shallow Coastal Waters. 28 EMBS Symposium. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Hesse, K.-J., U. Tillmann, andU. Brockmann. 1995b. Nutrient-Phytoplankton relations in the German Wadden Sea. ICES CM 1995/T:8. International Council for the Exploration of the Sea, Academic Press Limited, London.

    Google Scholar 

  • Jacobson, D. M. andD. M., Anderson. 1986. Thecate heterotrophic dinoflagellates: Feeding behavior and mechanisms.Journal of Phycology 22:249–258.

    Article  Google Scholar 

  • Leakey, R. J. G., P. H. Burkill, andM. A. Sleigh. 1992. Planktonic ciliates in Southampton Water: Abundance, biomass, production, and role in pelagic carbon flow.Marine Biology 114:67–83.

    Google Scholar 

  • Lenz, J. 1992. Microbial loop, microbial food web and classical food chain: Their significance in pelagic marine ecosystems.Archiv für Hydrobiologie Beiheft. 37:265–278.

    Google Scholar 

  • Lessard, E. J. 1991., The trophic role of heterotrophic dinoflagellates in diverse marine environments.Marine Microbial Food Webs 5:49–58.

    Google Scholar 

  • Nehring, S., K. J. Hesse, andU. Tillmann. 1995. The German Wadden Sea: A problem area for nuisance blooms?, p. 199–204.In P. Lassus, G. Arzul, E. Erard, P. Gentien, and C. Marcaillou (eds.), Harmful Marine Algal Blooms. Lavoisier, Intercept Ltd., London.

    Google Scholar 

  • Nielsen, T. K. andT. Kiørboe. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates.Limnology and Oceanography 39:508–519.

    Article  Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace, andR. W. Sanders. 1985. Protozoa in planktonic food webs.Journal of Protozoology 32:409–415.

    Google Scholar 

  • Putt, M. andD. K. Stoecker. 1989. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters.Limnology and Oceanography 34:1097–1103.

    Article  Google Scholar 

  • Smaal, A. C. andT. C. Prins. 1993. The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds, p. 271–298.In R. F. Dame (ed.), Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes. NATO ASI Series C, Volume 33. Springer-Verlag, Berlin.

    Google Scholar 

  • Smetacek, V. andF. Pollehne., 1986. Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework.Ophelia 26:401–428.

    Google Scholar 

  • Spero, H. J. andM. D. Morée. 1981. Phagotrophic feeding and its importance to the life cycle of the holozoic dinoflagellateGymnodinium fungiforme.Journal of Phycology 17:43–51.

    Article  Google Scholar 

  • Suttle, C. A., A. M. Chan, W. D. Taylor, andP. J. Harrison. 1986. Grazing of planktonic diatoms by microflagellates.Journal of Plankton Research 8:393–398.

    Article  Google Scholar 

  • Tillmann, U. andA. Mayer Brinkmann. 1995.Oblea, auf Beutefang—Zur Nahrungsaufnahme beschalter heterotropher Dinophyceen.Mikrokosmos 84:135–139.

    Google Scholar 

  • Tiselius, P. andM. Kuylenstierna. 1996. Growth and decline of a diatom spring bloom: Phytoplankton species composition, formation of marine snow and the role of heterotrophic dinoflagellates.Journal of Plankton Research 18:133–150.

    Article  Google Scholar 

  • Uhlic, G. andG. Sahling. 1990. Long-term studies onNoctiluca scintillans in the German Bight. Population dynamics and red tide phenomena 1968–1988.Netherlands Journal of Sea Research 25:101–112.

    Article  Google Scholar 

  • Uthermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik.Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9:1–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urban Tillmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillmann, U., Hesse, K.J. On the quantitative importance of heterotrophic microplankton in the northern German Wadden Sea. Estuaries 21, 585–596 (1998). https://doi.org/10.2307/1353297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353297

Keywords

Navigation