Skip to main content

Advertisement

Log in

Dynamic simulation of littoral zone habitats in low Chesapeake Bay. II. Seagrass habitat primary production and water quality relationships

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Seagrasses are indicators of ecosystem state because they are sensitive to variations in water composition and clarity resulting from watershed-level impacts. A simulation model designed to studyZostera marina (eelgrass) habitat dynamics in a variable littoral zone environment was used to address the potential ecological responses to eutrophication in lower Chesapeake Bay. The adjacent channel boundary environment is a source of dissolved and particulate materials to the littoral zone. In the simulations, concentrations of key water quality variables in the adjacent estuarine channel boundary were either halved or doubled relative to the base case to investigate light versus nitrogen effects. The role of the seagrass meadow in littoral zone carbon and nitrogen dynamics was evaluated when meadow size was changed in the model. Particulate and dissolved organic carbon accounted for 83% of the submarine light attenuation in the seagrass meadow. In all model runs, the water column concentrations of chlorophylla and dissolved inorganic nitrogen (DIN) were below the habitat criteria proposed as critical to seagrass survival. Eelgrass community production was carefully regulated by the interactive effects of light, nitrogen, and grazing on epiphyte growth. Increased eelgrass coverage in the littoral zone led to a simulated doubling of ecosystem primary production but reduced the fraction of production by planktonic and sediment microalgae. The simulation model presented here demonstrated the importance of material input from the channel in littoral zone biogeochemical dynamics. Submarine ligh regulated primary production more strongly than inorganic nitrogen concentrations in the model. External DIN concentrations influenced seagrass survival indirectly: enrichment stimulated growth of epiphytes and phytoplankton and promoted shading of the seagras leaf. The model was based upon a unimpacted ecosystem and deteriorated water quality negatively influenced primary production greater than the increases triggered by improved condition. Increased material loading to the littoral zone reduced submarine light availability, increased phytoplankton production, lowered ecosystem production, and reduced subtidal vegetated habitat. This simulation model of the estuarine littoral zone model combines hydrodynamics, biogeochemical sources and sinks, and living resources in order to better understand structure, function, and change in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Axelrad, D. M., K. A. Moore, andM. E. Bender. 1976. Nitrogen, Phosphorus, and Carbon Flux in Chesapeake Bay Marshes. Bulletin Number 79, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Bach, H. K. 1993. A dynamic model describing the seasonal variations in growth and the distribution of eelgrass (Zostera marina L.) I. Model theory.Ecological Modeling 65:31–50

    Article  CAS  Google Scholar 

  • Barko, J. W., D. Gunnison, andS. R. Carpenter. 1991. Sediment interactions with submersed macrophyte growth and community dynamics.Aquatic Botany 41:41–65.

    Article  Google Scholar 

  • Batiuk, R. A., R. J. Orth, K. A. Moore, W. C. Dennison, J. C. Stevenson, L. W. Staver, V. Carter, N. B. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, andP. Heasly 1992. Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Technical Synthesis. United States Environmental Protection Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Boyer, J. N., R. R. Christian, andD. W. Stanley. 1993. Patterns of phytoplankton primary productivity in the Neuse River estuary, North Carolina.Marine Ecology Progress. Series 97:287–297.

    Article  Google Scholar 

  • Boyer, J. N., R. R. Christian, andD. W. Stanley. 1994. Dynamics of NH4+ and NO3 uptake in the water column of the Neuse River estuary, North Carolina.Estuaries 17:361–371.

    Article  CAS  Google Scholar 

  • Buzzelli, C. P. 1996. Integrative analysis of ecosystem processes in the littoral zone of lower Chesapeake Bay: A modeling study of the Goodwin Islands National Estuarine Research Reserve location. Ph. D. Dissertation, College of William and Mary, School of Marine Science. Gloucester Point, Virginia.

    Google Scholar 

  • Buzzelli, C. P. 1998. Simulation modeling of littoral zone habitats in lower Chesapeake Bay. I. An ecosystem characterization related to model development.Estuaries 21:659–672.

    Article  CAS  Google Scholar 

  • Burdick, D. M., F. T. Short, andJ. Wolf. 1993. An index to assess and monitor wasting disease in eelgrassZostera marina Marine Ecology Progress Series 94:83–90.

    Article  Google Scholar 

  • Caffrey, J. M. andW. M. Kemp. 1990. Nitrogen cycling in sediments with estuarine populations ofPotamogeton perfoliatus andZostera marina.Marine Ecology Progress Series 66:147–160.

    Article  CAS  Google Scholar 

  • Caffrey, J. M. andW. M. Kemp 1991. Seasonal and spatial patterns of oxygen production, respiration, and root-rhizome release inPolamogeton perfoliatus andZostera marina.Aquatic Botany 40:109–128.

    Article  Google Scholar 

  • Cerco, C. F. 1995. Simulation of long-term trends in Chesapeake Bay eutrophication.Journal of Environmental Engineering 121:298–310.

    Article  CAS  Google Scholar 

  • Cerco, C. F. andT. Cole 1993. Three-dimensional eutrophication model of Chesapeake Bay.Journal of Environmental Engineering 119:1006–1025.

    Article  CAS  Google Scholar 

  • Cerco, C. F. andT. Cole 1994. Three-dimensional eutrophication model of Chesapeake Bay: Volume 1, Main Report. Technical Report EL-94-4, United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Childers, D. L., H. N. McKellar, R. F. Dame, F. H. Sklar, andE. R. Blood. 1993. A dynamic nutrient budget of subsystem interactions in a salt marsh estuary.Estuarine, Coastal, and Shelf Science 36:105–131.

    Article  CAS  Google Scholar 

  • Christian, R. R. andR. L. Wetzel 1991. Synergism between research and simulation models of estuarine microbial food webs.Microbial Ecology 22:111–125.

    Article  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1992. Nutrient flux in a landscape: Effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters.Estuaries 15:431–442.

    Article  CAS  Google Scholar 

  • Curling, K. andB. Neilson. 1994. Water quality in Chesapeake Bay. Virginia portion, water year 1993. Data report number 52, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia.

    Google Scholar 

  • Dame, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, andF. J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA.Marine Ecology Progress Series 72:153–166.

    Article  Google Scholar 

  • Dennison, W. C. 1987. Effects of light on seagrass photosynthesis, growth, and depth distribution.Aquatic Botany 27:15–26.

    Article  Google Scholar 

  • Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation.Bioscience 43:86–94.

    Article  Google Scholar 

  • Fisher, T. R., L. W. Harding, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine, Coastal, and Shelf Science 82:51–63.

    Google Scholar 

  • Fonseca, M. S. andW. J. Kenworthy. 1987. Effects of current on photosynthesis and distribution of seagrasses.Aquatic Botany 27:59–78.

    Article  Google Scholar 

  • Fredette, T. J., R. J. Diaz, J. Van Montfrans, andR. J. Orth. 1990. Secondary production within a seagrass bed (Zostera marina andRuppia maritima) in lower Chesapeake Bay.Estuaries 13:431–440.

    Article  Google Scholar 

  • Gallegos, C. 1994. Refining habitat requirements of submersed aquatic vegetation: Role of optical models.Estuaries 17:187–199.

    Article  Google Scholar 

  • Haefner, J. W. 1996. Modeling Biological Systems, Principles and Applications. Chapman & Hall, New York.

    Google Scholar 

  • Heck, K. L. andT. A. Thomann. 1984. The nursery role of seagrass meadows in the upper and lower reaches of Chesapeake Bay.Estuaries 7:31–540

    Article  Google Scholar 

  • Howard, R. K. andF. T. Short 1986. Seagrass growth and survivorship under the influence of epiphyte grazers.Aquatic Botany 24:287–302.

    Article  Google Scholar 

  • Kuo, A. Y. andB. J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries.Estuaries 10:271–283.

    Article  Google Scholar 

  • Kuo, A. Y. andK. Park 1994. A PC-based tidal prism water quality model for small coastal basins and tidal creeks. Special Report Number 324 in Applied Marine Science and Ocean Engineering. Virginia Institute of Marine Science, Gloucester Point, Virginia.

    Google Scholar 

  • Kuo, A. Y. andK. Park. 1995. A framework of coupling shoals and shallow embayments with main channels in numerical modeling of coastal plain estuaries.Estuaries 18:341–350.

    Article  CAS  Google Scholar 

  • Lubbers, L., W. R. Boynton, andW. M. Kemp. 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants.Marine Ecology Progress Series 65:1–14.

    Article  Google Scholar 

  • Madden, C. J. andW. M. Kemp. 1996. Ecosystem model of an estuarine submersed plant community: Calibration and simulation of eutrophication responses.Estuaries 19:457–474.

    Article  CAS  Google Scholar 

  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, andR. B. Jonas 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary.Marine Ecology Progress Series 32:149–160.

    Article  Google Scholar 

  • McPherson, B. F. andR. L. Miller 1987. The vertical attenuation of light in Charlotte Harbor, a shallow, subtropical estuary, southwestern Florida.Estuarine, Coastal, and Shelf Science 25:721–737.

    Article  CAS  Google Scholar 

  • Moore, K. A. 1996. Relationships between seagrass growth and survival and environmental conditions in a lower Chesapeake Bay tributary. Ph.D. Dissertation, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Neckles, H. A., R. L. Wetzel, andR. J. Orth. 1993. Relative effects of nutrient enrichment and grazing on epiphyton-macrophyte (Zostera marina L.) dynamics.Oecologia 93:285–295.

    Article  Google Scholar 

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance.Science 223:22–27.

    Article  CAS  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspective.Estuaries 7:531–540.

    Article  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1986. Seasonal and year-to-year variations in the growth ofZostera marina L. (eelgrass) in the lower Chesapeke Bay.Aquatic Botany 24:335–341.

    Article  Google Scholar 

  • Penhale, P. A. 1977. Macrophyte-epiphyte biomass and procuctivity in an eelgrass (Zostera marina L.) community.Journal of Experimental Marine Biology and Ecology 26:211–224.

    Article  CAS  Google Scholar 

  • Pinckney, J. L. andR. A. Zingmark. 1993. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems.Journal of Phycology 29:396–407.

    Article  Google Scholar 

  • Rizzo, W. M., G. J. Lackey, andR. R. Christian. 1992. Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperature estuary.Marine Ecology Progress Series 86:51–61.

    Article  Google Scholar 

  • Rizzo, W. M. andR. L. Wetzel. 1985. Intertidal an shoal benthic community metabolism in a temperate estuary: Studies of spatial and temporal variability.Estuaries 8:342–351.

    Article  Google Scholar 

  • Roman, C. T. andK. W. Able. 1988. Production ecology of eelgrass (Zostera marina L.) in a Cape Cod salt marsh-estuarine system, Massachusetts.Aquatic Botany 32:353–363.

    Article  Google Scholar 

  • Roman, C. T., K. W. Able, M. A. Lazzari, andK. L. Heck. 1990. Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: A comparative analysis.Estuarine, Coastal, and Shelf Science 30:35–46.

    Article  Google Scholar 

  • Short, F. T., D. M. Burdick, andJ. E. Kaldy, III. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass,Zostera marina.Limnology and Oceanography 40:740–749.

    Article  Google Scholar 

  • Spinner, G. P. 1969. Serial atlas of the marine environment,In The Wildlife Wetlands and Shellfish Areas of the Atlantic Coastal Zone. Volume 1, Folio 18. New York City. American Geographical Society, New York.

    Google Scholar 

  • Thorne-Miller, B., M. M. Harlin, G. B. Thursby, M. M. Brady-Campbell, andB. A. Dworetzky. 1983. Variation in the distribution and biomass of submerged macrophytes in five coastal lagoons in Rhode Island, U.S.A..Botanica Marina 26:231–242.

    Article  Google Scholar 

  • Twilley, R. R., W. M. Kemp, K. W. Staver, J. C. Stevenson, andW. R. Boynton. 1985. Nutrient enrichment of estuarine submersed vascular plant communities. I. Algal growth and effects on production of plants and associated communities.Marine Ecology Progress Series 23:179–191.

    Article  Google Scholar 

  • Verhagen, J. H. G. andP. H. Nienhuis. 1983. A simulation model of production, seasonal changes in biomass, and distribution of eelgrass (Zostera marina) in Lake Grevelingen.Marine Ecology Progress Series 10:87–195.

    Article  Google Scholar 

  • Vorosmarty, C. J. andT. C. Loder 1994. Spring-neap tidal contrasts and nutrient dynamics in a marsh dominated estuary.Estuaries 17:537–551.

    Article  Google Scholar 

  • Ward, L. G., W. M. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in the estuarine environment.Marine Geology 59:85–103.

    Article  Google Scholar 

  • Wetzel, R. L. andH. A. Neckles. 1986. A model ofZostera marina L. photosynthesis and growth: Simulated effects of selected physical-chemical variables and biological interactions.Aquatic Botany 26:307–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Buzzelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzzelli, C.P., Wetzel, R.L. & Meyers, M.B. Dynamic simulation of littoral zone habitats in low Chesapeake Bay. II. Seagrass habitat primary production and water quality relationships. Estuaries 21, 673–689 (1998). https://doi.org/10.2307/1353272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353272

Keywords

Navigation