Skip to main content

Advertisement

Log in

Does the common reed,Phragmites australis, affect essential fish habitat?

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Since the early 1900sPhragmites australis has been replacing other vegetation in Atlantic and gulf coast marshes at a rate of about 1% to 6% of the marsh surface per year. Vast areas of coastal marsh are now characterized by dense monotypic stands of this species. By virtue of its ability to build up the marsh surface,P. australis affects the landscape, hydrology, and hydroperiod of the marsh as well as drainage density, and other geomorphic features. Smoothed microtopography results in more difficult access to the marsh by nekton, and possibly reduced exchange of organic materials between the marsh and adjacent estuary. The pattern of replacement byP. australis results in fragmentation of existing stands ofSpartina alterniflora and other extant macrophytes, thereby altering landscape ecology and the ability of the marsh to support biodiversity and the production of marsh fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, New York.

    Google Scholar 

  • Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.

    Article  Google Scholar 

  • Blake, J. B. andJ. R. Karr. 1984. Species composition of bird communities and the conservation benefit of large versus small forests.Biological Conservation 30:173–187.

    Article  Google Scholar 

  • Browder, J. A., L. N. May, Jr.,A. Rosenthal, J. G. Gosselink, andR. H. Baumann. 1989. Modeling future trends in wetland loss and brown shrimp production in Louisiana using Thematic Mapper imagery.Remote Sensing of the Environment 28:45–59.

    Article  Google Scholar 

  • CH2MHill. 1995a Design alternatives analysis, Brown’s Run site. Draft report to Public Service Electric & Gas Company, Nov. 7. Public Service Electric & Gas Company, Newark, New Jersey.

    Google Scholar 

  • CH2MHill. 1995b. Design alternatives analysis, Green Swamp site. Draft report to Public Service Electric & Gas Company, Nov. 7. Public Service Electric & Gas Company, Newark, New Jersey.

    Google Scholar 

  • Collins, L. M., J. N. Collins, andL. B. Leopold. 1987. Geomorphic processes of an estuarine tidal marsh: Preliminary results and hypotheses, p. 1049–1072.In V. Garner (ed.), International Geomorphology 1986, Part I. John Wiley & Sons, New York.

    Google Scholar 

  • Diamond, J. M. 1975. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves.Biological Conservation. 7:129–145.

    Article  Google Scholar 

  • Dow, D. D. 1982. Software programs to measure interface complexity with remote-sensing data, with an example of a marine ecosystem application. National Aeronautics Space Administration Report No. 219, National Aeronautics Space Administration Earth Research Laboratory, National Space Technology Laboratory, Mississippi.

    Google Scholar 

  • Faller, K. H. 1979. Shoreline as a controlling factor in commercial shrimp production. National Aeronautics Space Administration Report No. 208, National Aeronautics Space Administration Earth Research Laboratory, National Space Technology Laboratory, Mississippi.

    Google Scholar 

  • Fell, P. E., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey resources for the mummichog,Fundulus heteroclitus L.?Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Foreman, R. T. T. andM. Godron. 1986. Landscape Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Frey, R. W. andP. B. Basan. 1978. Coastal salt marshes, p. 101–169.In R. A. Davis, Jr. (ed.), Coastal Sedimentary Environments. Springer-Verlag, New York.

    Google Scholar 

  • Gosselink, J. G. 1984. The ecology of delta marshes of coastal Louisiana: A community profile. FWS/OBS-84/09, Office Biological Services, United States Fish & Wildlife Service. Washington, D. C.

    Google Scholar 

  • Gosselink, J. G. andL. C. Lee. 1989. Cumulative impact assessment in bottom land hardwood forests.Wetlands 9:83–174.

    Google Scholar 

  • Harrington, Jr.R. W. andE. S. Harrington. 1961. Food selection among fishes invading a high subtropical salt marsh: From onset of followind through the progress of a mosquito brood.Ecology 42:646–666.

    Article  Google Scholar 

  • Hettler, W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.

    Article  Google Scholar 

  • Hodson, R. G., J. O. Hackman, andC. R. Bennett. 1981. Food habits of young spots in nursery acreas of the Cape Fear River, North Carolina.Transactions of the American Fisheries Society 110:495–501.

    Article  Google Scholar 

  • Johnston, C. A., J. Pastor, andG. Pinay. 1991. Quantitative methods for studying landscape boundaries, p. 107–128.In A. J. Hansen and F. di Castri (eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. springer Verlag, New York.

    Google Scholar 

  • Kleypas, J. andJ. M. Dean. 1983. Migration and feeding of the predatory fish,Baidiella chrysura Lacepede, in an intertidal creek.Journal of Experimental Marine Biology and Ecology 72:199–209.

    Article  Google Scholar 

  • Kneib, R. T. 1982. Habitat preference, predation, and the intertidal distribution of gammaridean amphipods in a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 59:219–230.

    Article  Google Scholar 

  • Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:219–230.

    Article  Google Scholar 

  • Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.

    Article  Google Scholar 

  • Kneib, R. T. 1994. Spatial pattern, spatial scale and feeding in fishes, p. 171–185.In K. Fresh and D. Stouder (eds.), Theory and Application in Fish Feeding Ecology. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Kneib, K. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.

    Article  Google Scholar 

  • Kuenzler, E. J. 1961. Structure and energy flow of a mussel population in a Georgia salt marsh.Limnology and Oceanography 6:191–204.

    Article  Google Scholar 

  • Lynch, J. F. andD. F. Whigham. 1984. Effects of forest fragmentation on breeding birds communities in Maryland, USA.Biological Conservation 28:287–324.

    Article  Google Scholar 

  • MacArthur, R. H. andE. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Marks, M., B. Lapin andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1986. The flume net: A quantitative method for sampling fishes and macrocrustacans on tidal marsh surfaces.Estuaries 9:219–224.

    Article  Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage. Ecology 69: 1341–1351.

    Article  Google Scholar 

  • Meyerson, L. A., K. A. Vogt, and R. M. Chambers. In press. Linking the success ofPhragmites to the decoupling of ecosystem nutrient cycles.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Press, Amsterdam.

  • Miller, C. andV. Guillory. 1980. A comparison of marsh fish communities using the Wegner ring.Proceedings Annual Conference, Southeastern Association of Fish and Wildlife Agencies 34:223–233.

    Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 1993. Wetlands, 2nd Edition, van Nostrand Rheinhold, New York.

    Google Scholar 

  • Murphy, S. C. 1991. The ecology of estuarine fishes in southern Maine high salt marshes; access corridors and movement patterns. M.S. Thesis, University of Massachusetts, Amherst, Massachusetts.

    Google Scholar 

  • Odum, W. E., J. S. Fisher, andJ. G. Pickral. 1979. Factors controlling the flux of particulate organic carbon from estuarine wetlands, p. 69–82.In R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum Press, New York.

    Google Scholar 

  • Phillips, J. D. 1987. Shoreline processes and establishment ofPhragmites australis in a coastal plain estuary.Vegetation 71:139–144.

    Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Rountree, R. A. andK. W. Able. 1992. Fauna of polyhaline subtidal marsh creeks in southern New Jersey: Composition, abundance and biomass.Estuaries 15:171–185.

    Article  Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creek banks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Rozas, L. P. andW. E. Odum. 1987. Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 10:36–43.

    Article  Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.

    Article  Google Scholar 

  • Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.

    Article  Google Scholar 

  • Targett, T. 1985. Utilization of salt marsh surface habitat by estuarine fishes (Abstract).Estuaries 8A.

  • Turner, M. G. 1989. Landscape ecology: The effect of pattern on process.Annual Review of Ecology and Systematics 20:171–197.

    Article  Google Scholar 

  • Turner, R. E., S. W. Woo, andH. R. Jilts. 1979. Estuarine influences on a Continental Shelf plankton community.Science 206:218–220.

    Article  Google Scholar 

  • Vince, S. I., I. Valiela, N. Backus, andJ. M. Teal. 1976. Predation by the salt marsh killfishFundulus heteroclitus (L.) in relation to prey size and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, and C. Currin. in press. Relative importance ofSpartina, Phragmites, benthic microalgae, and phytoplankton to food webs in restored and unaltered marsh habitats.Marine Ecology Progress Series.

  • Weigert, R. G. andL. R. Pomerory. 1981. The salt-marsh ecosystem: A synthesis, p. 219–230.In L. R. Pomeroy and R. G. Weigert (eds.), The Ecology of a Salt Marsh. Springer-Verlag, New York.

    Google Scholar 

  • Weinstein, M. P. 1981. Plankton productivity and the distribution of fishes on the southeastern U.S. continental shelf.Science 214:351–352.

    Article  Google Scholar 

  • Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and adaptive management for a large-scale wetland restoration project.Wetlands Ecology and Management 4:111–127.

    Article  Google Scholar 

  • Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog,Fundulus heteroclitus. An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Windham, L. 1995. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Masters Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Zedler, J. B. andR. Langis. 1991. Comparisons of constructed and natural salt marshes of San Diego Bay.Restoration Management Notes 9:21–25.

    Google Scholar 

  • Zedler, J. B., R. Langis, J. Cantilli, M. Zalejko, K. Swift, andS. Rutherford. 1988. Assessing the functions of mitigation marshes in southern California, p. 323–330.In J. A. Kusler, S. Daly, and G. Brooks, (eds.), Urban Wetlands. Omnipress, Madison, Wisconsin.

    Google Scholar 

  • Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.

    Article  Google Scholar 

  • Zimmerman, R. J., T. J. Minello, andG. Zamora, Jr. 1984. Selection of vegetated habitat by brown shrimp,Penaeus aztecus, in a Galveston Bay salt marsh. United States Fisheries Bulletin 82:325–336.

    Google Scholar 

Sources of Unipublished Materials

  • Able, K. W. Personal communication. Rutgers University Marine Field Station, 800 Bay Boulevard, c/o 132 Great Bay Boulevard, Tuckerton, New Jersey 08087.

  • Weinstein, M. P., S. A. Wainright, K. W. Able, and S. Y. Litvin. Submitted. Mapping essential habitats for marine transient finfishes in Delaware Bay using multiple stable isotopes. Transactions of the American Fisheries Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, M.P., Balletto, J.H. Does the common reed,Phragmites australis, affect essential fish habitat?. Estuaries 22, 793–802 (1999). https://doi.org/10.2307/1353112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353112

Keywords

Navigation