Skip to main content

Advertisement

Log in

Fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel morphology and restoration history

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

This study evaluated the use by fish of restored tidal wetlands and identified links between fish species composition and habitat characteristics. We compared the attributes of natural and constructed channel habitats in Sweetwater Marsh National Wildlife Refuge, San Diego Bay, California, by using fish monitoring data to explore the relationships between channel environmental characteristics and fish species composition. Fishes were sampled annually for 8 yr (1989–1996) at eight sampling sites, four in constructed marshes and four in natural marshes, using beach seines and blocking nets. We also measured channel habitat characteristics, including channel hydrology (stream order), width and maximum depth, bank slope, water quality (DO, temperature, salinity), and sediment composition. Fish colonization was rapid in constructed channels, and there was no obvious relationship between channel age and species richness or density. Total richness and total density did not differ significantly between constructed and natural channels, although California killifish (Fundulus parvipinnis) were found in significantly higher densities in constructed channels. Multivariate analyses showed fish assemblage composition was related to channel habitat characteristics, suggesting a channel’s physical properties were more important in determining fish use than its restoration status. This relationship highlights the importance of designing restoration projects with natural hydrologic features and choosing proper assessment criteria in order to avoid misleading interpretations of constructed channel success. We recommend that future projects be designed to mimic natural marsh hydrogeomorphology and diversity more closely, the assessment process utilize better estimates of fish habitat function (e.g., individual and community-based species trends, residence time, feeding, growth) and reference site choice, and experimental research be further incorporated into the restoration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, E. B., W. W. Covington, andD. A. Falk. 1997. Developing the conceptual basis for restoration ecology.Restoration Ecology 5:275–276.

    Article  Google Scholar 

  • Allen, L. G. 1982. Seasonal abundance, composition, and productivity of the littoral fish assemblage in upper Newport Bay, California.Fishery bulletin, United States 80:769–789.

    Google Scholar 

  • Allen, L. G. 1985. A habitat analysis of the nearshore marine fishes from southern California.Bulletin of the Southern California Academy of Sciences 84:133–155.

    Google Scholar 

  • Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.

    Article  Google Scholar 

  • Bell, S. S., M. S. Fonseca, andL. B. Motten. 1997. Linking restoration and landscape ecology.Restoration Ecology 5:318–323.

    Article  Google Scholar 

  • Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.

    Article  Google Scholar 

  • Bortone, S. A. andJ. J. Kimmel. 1991. Environmental assessment and monitoring of artificial habitats, p. 177–234.In W. Seaman and L. M. Sprague (eds.), Artificial Habitats for Marine and Freshwater Fisheries. Academic Press, Inc., San Diego, California.

    Google Scholar 

  • Brinson, M. M. andR. Rheinhardt. 1996. The role of reference wetlands in functional assessment and mitigation.Ecological Applications 6:69–76.

    Article  Google Scholar 

  • Brothers, E. B. 1975. The comparative ecology and behavior of three sympatric California gobies. Ph.D. Dissertation, University of California, San Diego, California.

    Google Scholar 

  • Carpelan, L. H. 1961. Salinity tolerances of some fishes of a southern California coastal lagoon.Copeia 1:32–39.

    Article  Google Scholar 

  • Chambers, J. R. 1992. Coastal degradation and fish population losses, p. 45–51.In R. H. Stroud (ed.), Stemming the Tide of Coastal Fish Habitat Loss. National Coalition for Marine Conservation, Inc., Savannah, Georgia.

    Google Scholar 

  • Clark, B. M., B. A. Bennett, andS. J. Lamberth. 1996. Factors affecting spatial variability in seine net catches of fish in the surf zone of False Bay, South Africa.Marine Ecology Progress Series 131:17–34.

    Article  Google Scholar 

  • Coats, R., M. Swanson, andP. Williams. 1989. Hydrologic analysis for coastal wetland restoration.Environmental Management 13:715–727.

    Article  Google Scholar 

  • Desmond, J. S., G. D. Williams, and J. B. Zedler. In press. Fish use of tidal creek habitats in two southern California saltmarshes.Ecological Engineering.

  • Ehrenfeld, J. G. andL. A. Toth. 1997. Restoration ecology and the ecosystem perspective.Restoration Ecology 5:307–317.

    Article  Google Scholar 

  • Emmett, R. L., S. L. Stone, S. A. Hinton, andM. E. Monaco. 1991. Distribution and Abundance of Fishes and Invertebrates in West Coast Estuaries, Volume II. Species Life History Summaries. Estuarine Living Marine Resources Program Report. No. 8. National Oceanic and Atmospheric Administration, National Ocean Survey, Strategic Environmental Assessments Division, Rockville, Maryland.

    Google Scholar 

  • Everts, C. H. 1980. A method to Predict the Stable Geometry of a Channel Connecting an Enclosed Harbor and Navigable Waters. United States Army Corps of Engineers Coastal Engineering Research Center Technical Paper No. 80-6. Ft. Belvoir, Virginia.

  • Fausch, K. D., J. Lyons, J. R. Karr, andP.L. Angermeier. 1990. Fish communities as indicators of environmental degradation, p. 123–144.In S. M. Adams (ed.), Biological Indicators of Stress in Fish. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Field, D. W., A. J. Refer, P. V. Genovese, andB. D. Shearer. 1991. Coastal Wetlands of the United States: An Accounting of a Valuable National Resource. National Oceanic and Atmospheric Administration and United States Fish and Wildlife Service, Department of Commerce, Washington, D.C.

    Google Scholar 

  • Frey, R. W., andP. B. Bason. 1985. Coastal salt marshes, p. 225–301.In R. A. Davis (ed.), Coastal Sedimentary Environments. Springer-Verlag, New York.

    Google Scholar 

  • Fritz, E. S.. 1975. The life history of the California killifishFundulus parvipinnis Girard in Anaheim Bay, California, p. 91–106.In E. D. Lane, and C. W. Hill (eds.), The Marine Resources of Anaheim Bay. Fish Bulletin 165. California Department of Fish and Game, Sacramento, California.

    Google Scholar 

  • Garofalo, D. 1980. The influence of wetland vegetation on tidal stream channel migration and morphology.Estuaries 3:258–270.

    Article  Google Scholar 

  • Gee, G. W. andJ. W. Bauder. 1986. Particle-size analysis, p. 383–411.In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Gibson, K. D., J. B. Zedler, andR. Langis. 1994. Limited response of cordgrass (Spartina foliosa) to soil amendments in a constructed marsh.Ecological Applications 4:757–767.

    Article  Google Scholar 

  • Gorman, O. T., andJ. R. Karr. 1978. Habitat structure and stream fish communities.Ecology 59:507–515.

    Article  Google Scholar 

  • Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, andJ. Callaway. 1997. Influence of physical processes on the design, functioning, and evolution of restored tidal wetlands in California (USA).Wetlands Ecology and Management 4:73–91.

    Article  Google Scholar 

  • Harris, J. H.. 1995. The use of fish in ecological assessments.Australian Journal of Ecology 20:65–80.

    Article  Google Scholar 

  • Havens, K. J., L. M. Varnell, andJ. G. Bradshaw. 1995. An assessment of ecological conditions in a constructed tidal marsh and two natural reference tidal marshes in coastal Virginia.Ecological Engineering 4:117–141.

    Article  Google Scholar 

  • Hixon, M. A., andJ. P. Beets. 1993. Predation, prey refuges, and the structure of coral-reef fish assemblages.Ecological Monographs 63:77–101.

    Article  Google Scholar 

  • Horn, M., andL. Allen. 1985. Fish community ecology in southern California bays and estuaries, p. 169–190.In A. Yañez-Arancibia (ed.), Fish Community Ecology in Estuaries and Coastal Lagoons: Toward an Ecosystem Integration. Universidad National Autonoma de Mexico Press México, Ciudad Universitaria, México.

    Google Scholar 

  • Johnson, J. M.. 1999. Fish Use of a Southern California Salt Marsh. M.S. Thesis, San Diego State University, San Diego, California.

    Google Scholar 

  • Karr, J. R. 1981. Assessment of biotic integrity using fish communities.Fisheries 6:21–27.

    Article  Google Scholar 

  • Karr, J. R.. 1987. Biological monitoring and environmental assessment: A conceptual framework.Environmental Management 11:249–256.

    Article  Google Scholar 

  • Kentula, M. E., R. P. Brooks, S. E. Gwin, C. C. Holland, A. D. Sherman, andJ. C. Sifneos. 1992. An approach to improving decision making in wetland restoration and creation. United States Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon.

    Google Scholar 

  • Kirchhofer, A.. 1995. Morphological variability in the ecotone—An important factor for the conservation of fish species richness in Swiss rivers.Hydrobiologia 303:103–110.

    Google Scholar 

  • Kusler, J. A., andM. E. Kentula. 1990. Wetland Creation and Restoration: The Status of the Science, Volume 1. Regional Reviews. EPA/600/3-89/038a. United States Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon.

    Google Scholar 

  • Kwak, T. J., andJ. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes.Oecologia 110:262–277.

    Article  Google Scholar 

  • Langis, R., M. Zalejko, andJ. B. Zedler. 1991. Nitrogen assessments in a constructed and natural salt marsh of San Diego Bay.Ecological Applications 1:40–51.

    Article  Google Scholar 

  • MacDonald, K. B.. 1990. South San Diego Bay Enhancement Plan, Volume 1. Resources Atlas. Marine Ecological Characterization, Bay History, and Physical Environment. San Diego Unified Port District, San Diego, California.

    Google Scholar 

  • Magurran, A. E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • McHugh, J. L. 1966. Management of estuarine fishes, p. 133–154.In R. F. Smith, A. H. Swartz, and W. H. Massman (eds.), A Symposium on Estuarine Fisheries. American Fisheries Society Special Publication. No. 3. Allen Press, Inc., Lawrence, Kansas.

    Google Scholar 

  • McIvor, C. C., andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.

    Article  Google Scholar 

  • Meffe, G. K. andA. L. Sheldon. 1988. The influence of habitat structure on fish assemblage composition in southeastern blackwater streams.American Midland Naturalist 120:225–240.

    Article  Google Scholar 

  • Meng, L., P. B. Moyle, andB. Herbold. 1994. Changes in abundance and distribution of native and introduced fishes of Suisun Marsh.Transactions of the American Fisheries Society 123:498–507.

    Article  Google Scholar 

  • Miller, D. J. andR. N. Lea. 1972. Guide to the coastal marine fishes of California. Fish Bulletin 157. California Department of Fish and Game, Sacramento, California.

    Google Scholar 

  • Miller, J. A. andC. A. Simenstad. 1997. A comparative assessment of a natural and created estuarine slough as rearing habitat for juvenile chinook and coho salmon.Estuaries 20:792–806.

    Article  Google Scholar 

  • Minello, T. J. andJ. W. Webb. 1997. Use of natural and createdSpartina alterniflora salt marshes by fishery species and other aquatic fauna in Galveston Bay, Texas, USA.Marine Ecology Progress Series 151:165–179.

    Article  Google Scholar 

  • Minello, T. J. andR. J. Zimmerman. 1992. Utilization of natural and transplanted Texas salt marshes by fish and decapod crustaceans.Marine Ecology Progress Series 90:273–285.

    Article  Google Scholar 

  • Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.

    Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 1993. Wetlands, 2nd edition. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Moy, L. D. andL. A. Levin. 1991. AreSpartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts.Estuaries 14:1–16.

    Article  Google Scholar 

  • Moyle, P. B. andT. Light. 1996. Biological invasions of fresh water: Empirical rules and assembly theory.Biological Conservation 78:149–161.

    Article  Google Scholar 

  • Mudie, P. J. 1970. A survey of the coastal wetland vegetation of San Diego Bay, Part I. Description of the environment and the vegetation types. Contract # W26 D25-51. California Department of Fish and Game, Sacramento, California.

    Google Scholar 

  • National Oceanic and Atmospheric Administration. 1990. Estuaries of the United States: Vital Statistics of a National Resource Base. Special 20th Anniversary Report. Rockville, Maryland.

  • Nordby, C. S. andJ. B. Zedler. 1991. Responses of fish and macrobenthic assemblages to hydrologic disturbances in Tijuana Estuary and Los Peñasquitos Lagoon, California.Estuaries 14:80–93.

    Article  Google Scholar 

  • Onuf, C. P. andM. L. Quammen. 1983. Fishes in a California coastal lagoon: Effects of major storms on distribution and abundance.Marine Ecology Progress Series 12:1–14.

    Article  Google Scholar 

  • Onuf, C. P., M. L. Quammen, G. P. Shaffer, C. H. Peterson, J. W. Chapman, J. Cermak, andR. W. Holmes. 1979. An analysis of the values of central and southern California coastal wetlands, p. 186–199.In P. E. Greeson, J. R. Clark, and J. E. Clark (eds.), Wetland Functions and Values: The State of Our Understanding. American Water Resources Association, Minneapolis, Minnesota.

    Google Scholar 

  • Paller, M. H. 1994. Relationships between fish assemblage structure and stream order in South Carolina coastal plain streams.Transactions of the American Fisheries Society 123:150–161.

    Article  Google Scholar 

  • Palmer, M. A., R. F. Ambrose, andN. L. Poff. 1997. Ecological theory and community restoration ecology.Restoration Ecology 5:291–300.

    Article  Google Scholar 

  • Pearcy, W. G. andS. S. Myers. 1974. Larval fishes of Yaquina Bay, Oregon: A nursery ground for marine fishes?Fishery Bulletin, United States 72:201–213.

    Google Scholar 

  • Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.

    Article  Google Scholar 

  • Piepenburg, D. andU. Piatkowski. 1992. A program for computer-aided analyses of ecological field data.CABIOS 8:587–590.

    CAS  Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Ruiz, G. M., A. H. Hines, andM. H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay.Marine Ecology Progress Series 99:1–16.

    Article  Google Scholar 

  • Sebens, K. P. 1991. Habitat structure and community dynamics in marine benthic systems, p. 211–234.In S. S. Bell, E. D. McCoy, and H. R. Mushinsky (eds.), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman and Hall, New York.

    Google Scholar 

  • Shreffler, D. K., C. A. Simenstad, andR. M. Thom. 1990. Temporary residence by juvenile salmon of a restored estuarine wetland.Canadian Journal of Fisheries and Aquatic Sciences 47:2079–2084.

    Article  Google Scholar 

  • Shreffler, D. K., C. A. Simenstad, andR. M. Thom. 1992. Juvenile salmon foraging in a restored estuarine wetland.Estuaries 15:204–213.

    Article  Google Scholar 

  • Simenstad, C. A., C. D. Tanner, R. M. Thom, andL. L. Conquest. 1991. Estuarine Habitat Assessment Protocol. United State Environmental Protection Agency, Seattle, Washington.

    Google Scholar 

  • Simenstad, C. A. andR. M. Thom. 1996. Functional equivalency trajectories of the restored Gog-le-hi-te estuarine wetland.Ecological Applications 6:38–56.

    Article  Google Scholar 

  • Strahler, A. N. 1964. Quantitative geomorphology of drainage basins and channel networks, p. 34–76.In V. T. Chow (ed.), Handbook of Applied Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • Streever, W. J. andK. M. Portier. 1994. A computer program to assist with sampling design in the comparison of natural and constructed wetlands.Wetlands 14:199–205.

    Article  Google Scholar 

  • Swift, C. C., T. R. Haglund, M. Ruiz, andR. N. Fisher. 1993. The status and distribution of the freshwater fishes of southern California.Bulletin of the Southern California Academy of Sciences 92:101–167.

    Google Scholar 

  • Swift, C. C., J. L. Nelson, C. Maslow, andT. Stein. 1989. Biology and Distribution of the Tidewater Goby,Eucyclogobius newberryi (Pisces: Gobiidae) of California. Contributions in Science No. 404. Natural History Museum of Los Angeles County, Los Angeles, California.

    Google Scholar 

  • SYSTAT, Inc. 1992. Statistics, Version 5.2 Edition. SYSTAT, Inc., Evanston, Illinois.

    Google Scholar 

  • ter Braak, C. J. F. 1988. CANOCO—A FORTRAN program for Canonical Community Ordination. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • ter Braak, C. J. F. andP. F. M. Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology.Aquatic Sciences 57:255–289.

    Article  Google Scholar 

  • Thayer, G. W., J. P. Thomas, andK. V. Koski. 1996. The habitat research plan of the National Marine Fisheries Service.Fisheries 21:6–10.

    Article  Google Scholar 

  • Todd, E. S. andA. W. Ebeling. 1966. Aerial respiration in the longjaw mudsuckerGillichthys mirabilis (Teleostei: Gobiidae).Biological Bulletin 130:265–288.

    Article  Google Scholar 

  • Trexler, J. C. 1995. Restoration of the Kissimmee River: A conceptual model of past and present fish communities and its consequences for evaluating restoration success.Restoration Ecology 3:195–210.

    Article  Google Scholar 

  • Underwood, A. J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.Oceanography and Marine Biology Annual Review 19:513–605.

    Google Scholar 

  • Vose, F. E. andS. S. Bell. 1994. Resident fishes and macrobenthos in mangrove-rimmed habitats: Evaluation of habitat restoration by hydrologic modification.Estuaries 17:585–596.

    Article  Google Scholar 

  • Weinstein, M. P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fishery Bulletin, United States 77:339–357.

    Google Scholar 

  • Yoklavich, M. M., G. M. Caillet, J. P. Barry, D. A. Ambrose, andB. S. Antrim. 1991. Temporal and spatial patterns in abundance and diversity of fish assemblages in Elkhorn Slough, California.Estuaries 14:465–480.

    Article  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Zedler, J. B. 1980. Algal mat productivity: Comparisons in a salt marsh.Estuaries 3:122–131.

    Article  Google Scholar 

  • Zedler, J. B. (Principal author). 1996a. Tidal Wetland Restoration: A Scientific Perspective and Southern California Focus. California Sea Grant College System, University of California, La Jolla, California.

    Google Scholar 

  • Zedler, J. B. 1996b. Coastal mitigation in southern California: The need for a regional restoration strategy.Ecological Applications 6:84–93.

    Article  Google Scholar 

  • Zedler, J. B. andJ. C. Callaway. 1999. Tracking wetland restoration: Do mitigation sites follow desired trajectories?Restoration Ecology 7:69–73.

    Article  Google Scholar 

  • Zedler, J. B., G. D. Williams, andJ. S. Desmond. 1997. Wetland mitigation: Can fishes distinguish between natural and constructed wetlands?Fisheries 22:26–28.

    Google Scholar 

Sources of Unpublished Materials

  • Brinson, M. M. 1993. A Hydrogeomorphic Classification for Wetlands. Wetlands Research Program Technical Report WRP-DE-4. United States Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • City of Carlsbad and United States Army Corps of Engineers. 1990. Batiquitos Lagoon Enhancement Project Final EIR/EIS. United States Army Corps of Engineers, Los Angeles, California.

    Google Scholar 

  • Coats, R. N., P. B. Williams, C. K. Cuffe, J. B. Zedler, D. Reed, S. M. Watry, and J. S. Noller. 1995. Design Guidelines for Tidal Channels in Coastal Wetlands. Report prepared for the United States Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.

  • MEC Analytical Systems, Inc. 1993. San Dieguito Lagoon Restoration Project Biological Baseline Study, March–August 1992. Report submitted to Southern California Edison, Carlsbad, California.

  • MEC Analytical Systems, Inc. 1995. Anaheim Bay Biological Monitoring Project, Volume 2. Survey Data. Port of Long Beach, Carlsbad, California.

    Google Scholar 

  • United States Fish and Wildlife Service. 1988. The Combined Sweetwater River Flood Control and Highway Project, San Diego County, California. Biological Opinion 1-1-78-F-14-R2. United States Fish and Wildlife Service, Portland, Oregon.

    Google Scholar 

  • Williams, G. D., J. Desmond, J. Callaway, J. Terp, and K. Thorbjarnson. 1998. System Monitoring at the Oneonta Tidal Linkage Restoration Project, Tijuana Estuary 1997–1998. Annual Progress Report to the California Coastal Conservancy, California.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.D., Zedler, J.B. Fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel morphology and restoration history. Estuaries 22, 702–716 (1999). https://doi.org/10.2307/1353057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353057

Keywords

Navigation