Skip to main content
Log in

Nutrient and phytoplankton dynamics in a sewage-impacted Gulf coast estuary: A field test of the PEG-model and equilibrium resource competition theory

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Eutrophication and noxious bloom events are becoming more prevalent with increasing anthropogenic activities. To lessen ecological damage, there is a need to develop phytoplankton management programs aimed at enhancing growth of beneficial algae. The success of such management schemes with be dependent on the predictability of phytoplankton succession within the target system to a controlled perturbation. Freshwater lakes appear to exhibit a degree of predictability as described by the PEG-model and Equilibrium Resource Competition theory. We investigated whether these concepts could be applied to a marine system, the Nueces River estuary, Texas. The PEG-model predicted nicely the initial occurrence of edible phytoplankton forms after a favorable nutrient perturbation. Equilibrium Resource Competition theory, however, only successfully predicted the occurrence of major phytoplankton taxa immediately after a nutrient perturbation. Systemwide correlations between N:P and cyanobacteria, green algae, and diatoms were poor. In the Nueces River estuary, succession within the phytoplankton community showed a degree of predictability to nutrient perturbations. Therefore, management of the phytoplankton community composition may be possible. The PEG-model appears to be a useful guide for a phytoplankton management scheme, while the utility of Equilibrium Resource Competition may be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, D. M., A. W. White, and D. G. Baden. 1985. Toxic Dinoflagellates. Elsevier. Barica, J. 1994. How to keep green algae in eutrophic lakes. Biologia Bratislvia 49:611–614.

    Google Scholar 

  • Bodeanu, N. 1993. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions, p. 203–209. In T. J. Smayda and Y. Shimizu (ed.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Bold, H. C. and M. J. Wynne. 1985. Introduction to the Algae, Structure and Reproduction. 2nd edition, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn, and N. Y. P. Owens. 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology 93:581–590.

    Article  CAS  Google Scholar 

  • Buskey, E. 1993. Annual pattern of micro- and mesoplankton abundance and biomass in a subtropical estuary. Journal of Plankton Research 15:907–924.

    Article  Google Scholar 

  • Buskey, E. J. and D. A. Stockwell. 1993. Effects of a persistent “brown tide” on zooplankton populations in the Laguna Madre of south Texas, p. 659–666. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Bloom in the Sea. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Cheremisinoff, P. N. 1995. Handbook of Water and Wastewater Treatment Technology. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Chisholm, S. W. 1992. Phytoplankton size, p. 213–237. In P. G. Falkowski and A. D. Woodhead (eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York.

    Google Scholar 

  • Cifuentes, L. A., J. H. Sharp, and M. L. Fogel. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnology and Oceanography 33:1102–1115.

    CAS  Google Scholar 

  • Coffin, R. B., L. A. Cifuentes, and P. M. Eldridge. 1994. The use of stable carbon isotopes to study microbial processes in estuaries, p. 222–240. In K. Lajtha and R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Dortch, Q. and T. E. Whitedge. 1992. Does nitrogen or silica limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12:1293–1309.

    Article  Google Scholar 

  • Fisher, T. R., E. R. Peele, J. W. Ammerman, and L. W. J. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series 82:51–63.

    Article  Google Scholar 

  • Fogel, M. L. and L. A. Cifuentes. 1993. Isotope fractionation during primary production, p. 73–98. In M. H. Engel and S. A. Macko (eds.), Organic Geochemistry. Plenum Press, New York.

    Google Scholar 

  • Goericke, R., J. P. Montoya, and B. Fry. 1994. Physiology of isotope fractionation in algae and cyanobacteria, p. 187–221. In K. Lajtha and R. H. Michener (eds.), Stable Isotope in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt, and K. Kremling. 1993. Methods of Seawater Analysis. Verlag-Chemie, New York.

    Google Scholar 

  • Haas, L. W. 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Annals Institute of Oceanography Paris 58:261–266.

    Google Scholar 

  • Hansen, B., P. K. Bjornsen, and P. J. Hansen. 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanography 39:395–403.

    Google Scholar 

  • Heckey, R. E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33:796–822.

    Google Scholar 

  • Hendzel, L. L., R. E. Heckey, and D. L. Findlay. 1994. Recent changes of N2 fixation in lake 227 in response to reduction of the N∶P loading ratio. Canadian Journal of Fisheries and Aquatic Sciences 51:2247–2253.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225–1228.

    CAS  Google Scholar 

  • Jorgensen, S. E. 1979. Handbook of Environmental Data and Ecological Parameters. International Society for Ecological Modelling. Copenhagen, Denmark.

    Google Scholar 

  • Kilham, P. and R. E. Heckey. 1988. Comparative ecology of marine and freshwater phytoplankton. Limnology and Oceanography 33:776–795.

    Google Scholar 

  • Kilham, S. S. and P. Kilham. 1984. The importance of resource supply rates in determining phytoplankton community structure, p. 7–28. In D. G. Meyers and J. R. Strickler (eds.), Trophic Interactions Within Aquatic Ecosystems. American Association for the Advancement of Science, Washington D.C.

    Google Scholar 

  • Knisely, K. and W. Keller. 1986. Selective feeding of four zooplankton species on natural lake plankton. Oecologia 96:86–94.

    Article  Google Scholar 

  • Lopez-Veneroni, D. and L. A. Cifuentes. 1994. Transport of dissolved organic nitrogen in Mississippi River plume and Texas-Louisiana continental shelf near surface waters. Estuaries 17:796–808.

    Article  CAS  Google Scholar 

  • Macko, S. A., L. Entzeroth, and P. L. Parker. 1984. Regional differences in nitrogen and carbon isotopes on the continental shelf of the Gulf of Mexico. Naturwissenschaften 71:374–375.

    Article  Google Scholar 

  • Maestrini, S. Y. and E. Graneli. 1991. Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom: An hypothesis. Oceanologica Acta 14:33–51.

    Google Scholar 

  • Makulla, A. and U. Sommer. 1993. Relationships between resource ratios and phytoplankton species composition during spring in five north German lakes. Limnology and Oceanography 38:846–856.

    CAS  Google Scholar 

  • Mallin, M. A. and H. W. Paerl. 1994. Planktonic trophic transfer in an estuary: Seasonal, diel, and community structure effects. Ecology 75:2168–2184.

    Article  Google Scholar 

  • Mantoura, R. F. C. and C. A. Llewellyn. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high performance liquid chromotography. Analytica Chimica Acta 151:297–314.

    Article  CAS  Google Scholar 

  • The Math Works, Inc. 1992. MATLAB® High-Performance Numeric Computation and Visualization Software. Natick, Massachusetts.

  • Michener, R. H. and D. M. Schell. 1994. Stable isotope ratios as tracers in marine aquatic food webs, p. 138–157. In K. Lajtha and R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications. Cambridge, Massachusetts.

    Google Scholar 

  • Nixon, S. W., S. L. Granger, D. I. Taylor, P. W. Johnson, and B. A. Buckley. 1994. Subtidal volume fluxes, nutrient inputs and the brown tide: An alternate hypothesis. Estuarine, Coastal and Shelf Science 39:303–312.

    Article  CAS  Google Scholar 

  • Officer, C. B. and D. R. Lynch. 1981. Dynamics of mixing in estuaries. Estuarine, Coastal and Shelf Science 12:525–533.

    Article  Google Scholar 

  • Paeri, H. W. 1995. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia 41:237–259.

    Google Scholar 

  • Paeri, H. W., B. M. Bebout, and L. E. Prufert. 1989. Naturally occurring patterns of oxygenic photosynthesis and N2 fixation in a marine microbial mat: Physiological and ecological ramifications, p. 326–341. In Y. Cohen and E. Rosenberg (eds.), Micobial Mats Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Pasciak, W. J. and J. Gavis. 1974. Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography 19:881–888.

    Article  Google Scholar 

  • Pollingher, U. and E. Zemel. 1981. In-situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cinctum forma westii (Lemm.) Lefevre. British Journal of Phycology 16:281–287.

    Article  Google Scholar 

  • Riegman, R. 1991. Mechanisms behind eutrophication induced novel algal blooms. Nederlands Instituut voor Onderzoek der Zee 9:1–52.

    Google Scholar 

  • Riegman, R. and B. Kuipers. 1994. Resource competition and selective grazing of plankton in a multispecies pelagic food web model. Marine Ecology 15:153–164.

    Article  Google Scholar 

  • Riegman, R., A. A. M. Noordeloos, and G. C. Cadee. 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Marine Biology 112:479–484.

    Article  Google Scholar 

  • Riegman, R., A. Rowe, A. A. M. Noordeloos, and G. C. Cadee. 1993. Evidence for eutrophication induced Phaeocystis sp. blooms in the Marsdiep area (The Netherlands), p. 799–805. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Roelke, D. L., P. M. Eldridge, and L. A. Cifuentes. 1995. Managing nutrient loading ratios and phytoplankton community structure: Biological pump or noxious bloom. Gordon Research Conference on Estuarine and Coastal Processes. Plymouth, New Hampshire, United States.

    Google Scholar 

  • Ryther, J. H. and C. B. Officer. 1981. Impact of nutrient enrichment on water uses, p. 247–262. In B. J. Neilson and L. E. Cronin (eds.), Estuaries and Nutrients. Humana, Totowa, New Jersey.

    Google Scholar 

  • Salata, G. G., L. A. Roelke, and L. A. Cifuentes. 1997. A rapid and precise method for the determination of stable carbon isotopes in DIC. American Society of Limnology and Oceanography, Lawrence, Kansas.

    Google Scholar 

  • Schindler, D. W. 1985. The coupling of elemental cycles by organisms: Evidence from whole lake chemical perturbations, p. 225–250. In W. Stumm (ed.), Chemical Processes in Lakes. Wiley and Sons, New York.

    Google Scholar 

  • Seliger, H. H. 1993. Red tide mechanisms: Spatial and temporal scales, p. 819–824. In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Shumway, S. E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society 21:65–104.

    Article  Google Scholar 

  • Shumway, S. E., J. Barter, and S. Sherman-Caswell. 1990. Auditing the impact of toxic algal blooms on oysters. Environmental Auditor 2:41–56.

    Google Scholar 

  • Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic p. 29–40. In E. Graneli (ed.), Toxic Marine Phytoplankton. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Smayda, T. J. and Y. Shimizu. 1993. Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Sommer, U. 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv fur Hydrobiologie 96:399–416.

    Google Scholar 

  • Sommer, U. 1989a. The role of competition for resources in phytoplankton succession, p. 57–106. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Sommer, U. 1989b. Toward a Darwinian ecology of plankton, p. 1–8. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Sommer, U. 1993. Phytoplankton competition in PluBsee: A field test of the resource ratio hypothesis. Limnology and Oceanography 38:838–845.

    Article  CAS  Google Scholar 

  • Sommer, U. 1994. Are marine diatoms favoured by high Si:N ratios?. Marine Ecology Progress Series 115:309–315.

    Article  CAS  Google Scholar 

  • Sommer, U., U. Gaedke and A. Schweizer. 1993. The first decade of oligotrophication of Lake Constance. Oecologia 93:276–284.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert, and A. Duncan. 1986. The PEG-model of seasonal succession of plankton events in fresh waters. Archiv fur Hydrobiologie 106:436–440.

    Google Scholar 

  • Sterner, R. W. 1989. The role of grazers in phytoplankton succession. p. 107–170. In U. Sommer (ed.), Plankton Ecology. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Sterner, R. W. and D. O. Hessen. 1994. Algal nutrient limitation and the nutrietion of aquatic herbivores. Annual Review in Ecology and Systematics 25:1–29.

    Article  Google Scholar 

  • Thomas, W. H. and C. H. Gibson. 1990. Effects of small scale turbulence on microalgae. Journal of Applied Phycology 2:71–77.

    Article  Google Scholar 

  • Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham, and F. A. Johnson. 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv fur Hydrobiologia 106:473–485.

    Google Scholar 

  • Tuttle, R. C. and A. R. Loeblich III. 1975. An optimal growth medium for the dinoflagellate Cryptothecodinium cohnii. Phycologia 14:1–8.

    Google Scholar 

  • Velinsky, D. J., J. R. Pennock, J. H. Sharp, L. A. Cifuentes, and M. L. Focel. 1989. Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry 26:351–361.

    Article  CAS  Google Scholar 

  • White, A. W. 1976. Growth inhibition caused by turbulence in the toxic marine dinoflagellate Gonyaulax excavata. Journal of the Fishery Research Board of Canada 33:2598–2602.

    Google Scholar 

  • Yoon, W. B. and R. Benner. 1992. Denitrification and oxygen consumption in sediments of two south Texas estuaries. Marine Ecology Progress Series 90:157–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Roelke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelke, D.I., Cifuentes, L.A. & Eldridge, P.M. Nutrient and phytoplankton dynamics in a sewage-impacted Gulf coast estuary: A field test of the PEG-model and equilibrium resource competition theory. Estuaries 20, 725–742 (1997). https://doi.org/10.2307/1352247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352247

Keywords

Navigation