Skip to main content
Log in

Anesthetic-Related Neurotoxicity and the Developing Brain

Shall We Change Practice?

  • Therapy In Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Millions of human infants receive general anesthetics for surgery or diagnostic procedures every year worldwide, and there is a growing inquietude regarding the safety of these drugs for the developing brain. In fact, accumulating experimental evidence together with recent epidemiologic observations suggest that general anesthetics might exert undesirable effects on the immature nervous system.

The goal of this review is to highlight basic science issues as well as to critically present experimental data and clinical observations relevant to this possibility. By acting on a plethora of ligand-gated ion channels, general anesthetics are powerful modulators of neural activity. Since even brief interference with physiologic activity patterns during critical periods of development are known to induce permanent alterations in brain circuitry, anesthetic-induced interference with brain development is highly plausible. In line with this hypothesis, compelling experimental evidence, from rodents to primates, suggests increased neuroapoptosis and associated long-term neurocognitive deficits following administration of these drugs at defined stages of development. Recent epidemiologic studies also indicate a potential association between anesthesia/surgery and subsequently impaired neurocognitive function in humans. It is, however, important to note that extrapolation of experimental studies to human practice requires extreme caution, and that currently available human data are hindered by a large number of potentially confounding factors.

Thus, despite significant advances in the field, there is still insufficient evidence to determine whether anesthetics are harmful to the developing human brain. Consequently, no change in clinical practice can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FDA Advisory Committee background document to the Anesthetic and Life Support Drugs Advisory Committee (ALSDAC), March 10, 2011 [online]. Available from URL: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AnestheticAndLifeSupportDrugsAdvisoryCommittee/UCM245769.pdf [Accessed 2011 Sep 12]

  2. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev 1979; 3(1): 79–83

    Article  PubMed  CAS  Google Scholar 

  3. Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163(2): 195–205

    Article  PubMed  CAS  Google Scholar 

  4. Huttenlocher PR, De Courten C, Garey LJ, et al. Synaptic development in human cerebral cortex. Int J Neurol 1982; 16–17: 144–54

    PubMed  Google Scholar 

  5. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387(2): 167–78

    Article  PubMed  CAS  Google Scholar 

  6. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48(10): 757–67

    Article  PubMed  CAS  Google Scholar 

  7. Stockard CR. Developmental rate and structural expression: an experimental study of twins, “double monsters” and single deformities, and the interaction among embryonic organs during their origin and development. Am J Anat 1921; 28: 115–27

    Article  Google Scholar 

  8. Lorenz KZ. The evolution of behavior. Sci Am 1958; 199: 67–74

    Article  PubMed  CAS  Google Scholar 

  9. Hensch TK. Critical period regulation. Annu Rev Neurosci 2004; 27: 549–79

    Article  PubMed  CAS  Google Scholar 

  10. Jan YN, Jan LY. The control of dendrite development. Neuron 2003; 40(2):229–42

    Article  PubMed  CAS  Google Scholar 

  11. Wong RO, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 2002; 3(10): 803–12

    Article  PubMed  CAS  Google Scholar 

  12. Chen Y, Ghosh A. Regulation of dendritic development by neuronal activity. J Neurobiol 2005; 64(1): 4–10

    Article  PubMed  CAS  Google Scholar 

  13. Akerman CJ, Cline HT. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci 2007; 30(8): 382–9

    Article  PubMed  CAS  Google Scholar 

  14. Wang DD, Kriegstein AR. GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 2008; 28(21): 5547–58

    Article  PubMed  CAS  Google Scholar 

  15. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6(11): 877–88

    Article  PubMed  CAS  Google Scholar 

  16. Liu G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 2004; 7(4): 373–9

    Article  PubMed  CAS  Google Scholar 

  17. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002; 3(9): 728–39

    Article  PubMed  CAS  Google Scholar 

  18. Powell EM, Campbell DB, Stanwood GD, et al. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 2003; 23(2): 622–31

    PubMed  CAS  Google Scholar 

  19. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003; 2(5): 255–67

    Article  PubMed  CAS  Google Scholar 

  20. Yamakura T, Bertaccini E, Trudell JR, et al. Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 2001; 41: 23–51

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen L, Rigo JM, Rocher V, et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 2001; 305(2): 187–202

    Article  PubMed  CAS  Google Scholar 

  22. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190: S8–21

    Article  PubMed  CAS  Google Scholar 

  23. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 2004; 5(9): 709–20

    Article  PubMed  CAS  Google Scholar 

  24. Quimby KL, Aschkenase LJ, Bowman RE, et al. Enduring learning deficits and cerebral synaptic malformation from exposure to 10 parts of halothane per million. Science 1974; 185(151): 625–7

    Article  PubMed  CAS  Google Scholar 

  25. Quimby KL, Katz J, Bowman RE. Behavioral consequences in rats from chronic exposure to 10 PPM halothane during early development. Anesth Analg 1975; 54(5): 628–33

    Article  PubMed  CAS  Google Scholar 

  26. Uemura E, Ireland WP, Levin ED, et al. Effects of halothane on the development of rat brain: a golgi study of dendritic growth. Exp Neurol 1985; 89(3): 503–19

    Article  PubMed  CAS  Google Scholar 

  27. Uemura E, Levin ED, Bowman RE. Effects of halothane on synaptogenesis and learning behavior in rats. Exp Neurol 1985; 89(3): 520–9

    Article  PubMed  CAS  Google Scholar 

  28. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283(5398): 70–4

    Article  PubMed  CAS  Google Scholar 

  29. Ikonomidou C, Bittigau P, Ishimaru MJ, et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000; 287(5455): 1056–60

    Article  PubMed  CAS  Google Scholar 

  30. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003; 23(3): 876–82

    PubMed  CAS  Google Scholar 

  31. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 2008; 106(6): 1681–707

    Article  PubMed  Google Scholar 

  32. Shu Y, Patel SM, Pac-Soo C, et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology 2010; 113(2): 360–8

    Article  PubMed  CAS  Google Scholar 

  33. Rizzi S, Carter LB, Ori C, et al. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol 2008; 18(2): 198–210

    Article  PubMed  Google Scholar 

  34. Slikker WJ, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 2007; 98(1): 145–58

    Article  PubMed  CAS  Google Scholar 

  35. Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci 2009; 27(7): 727–31

    Article  PubMed  CAS  Google Scholar 

  36. Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 2011; 33(2): 220–30

    Article  PubMed  CAS  Google Scholar 

  37. Brambrink AM, Evers AS, Avidan MS, et al. Isoflurane-induced neuro-apoptosis in the neonatal rhesus macaque brain. Anesthesiology 2010; 112(4): 834–41

    Article  PubMed  CAS  Google Scholar 

  38. Anand KJ, Hall RW, Desai N, et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet 2004; 369(9422): 1673–82

    Article  Google Scholar 

  39. Zagon IS, McLaughlin PJ, Thompson CI. Development of motor activity in young rats following perinatal methadone exposure. Pharmacol Biochem Behav 1979; 10(5): 743–9

    Article  PubMed  CAS  Google Scholar 

  40. Zagon IS, McLaughlin PJ, Thompson CI. Learning ability in adult female rats perinatally exposed to methadone. Pharmacol Biochem Behav 1979; 10(6): 889–94

    Article  PubMed  CAS  Google Scholar 

  41. Hauser KF, McLaughlin PJ, Zagon IS. Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Res 1987; 416(1): 157–61

    Article  PubMed  CAS  Google Scholar 

  42. Zagon IS, McLaughlin PJ. Increased brain size and cellular content in infant rats treated with an opiate antagonist. Science 1983; 221(4616): 1179–80

    Article  PubMed  CAS  Google Scholar 

  43. Seatriz JV, Hammer RPJ. Effects of opiates on neuronal development in the rat cerebral cortex. Brain Res Bull 1993; 30(5–6): 523–7

    Article  PubMed  CAS  Google Scholar 

  44. Niu L, Cao B, Zhu H, et al. Impaired in vivo synaptic plasticity in dentate gyrus and spatial memory in juvenile rats induced by prenatal morphine exposure. Hippocampus 2009; 19(7): 649–57

    Article  PubMed  CAS  Google Scholar 

  45. McPherson RJ, Gleason C, Mascher-Denen M, et al. A new model of neonatal stress which produces lasting neurobehavioral effects in adult rats. Neonatology 2007; 92(1): 33–41

    Article  PubMed  Google Scholar 

  46. Lujan R, Shigemoto R, Lopez-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience 2005; 130(3): 567–80

    Article  PubMed  CAS  Google Scholar 

  47. Heng JI, Moonen G, Nguyen L. Neurotransmitters regulate cell migration in the telencephalon. Eur J Neurosci 2007; 26(3): 537–46

    Article  PubMed  Google Scholar 

  48. Stratmann G, Sall JW, May LD, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 2009; 110(4): 834–48

    Article  PubMed  CAS  Google Scholar 

  49. Vutskits L, Gascon E, Tassonyi E, et al. Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 2005; 102(5): 970–6

    Article  PubMed  CAS  Google Scholar 

  50. Vutskits L, Gascon E, Tassonyi E, et al. Effect of ketamine on dendritic arbor development and survival of immature GABAergic neurons in vitro. Toxicol Sci 2006; 91(2): 540–9

    Article  PubMed  CAS  Google Scholar 

  51. Vutskits L, Gascon E, Potter G, et al. Low concentrations of ketamine initiate dendritic atrophy of differentiated GABAergic neurons in culture. Toxicology 2007; 234(3): 216–26

    Article  PubMed  CAS  Google Scholar 

  52. Head BP, Patel HH, Niesman IR, et al. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 2009; 110(4): 813–25

    Article  PubMed  CAS  Google Scholar 

  53. Lunardi N, Ori C, Erisir A, et al. General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 2010; 17(2): 179–88

    Article  PubMed  CAS  Google Scholar 

  54. Briner A, De Roo M, Dayer A, et al. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology 2010; 112(3): 546–56

    Article  PubMed  Google Scholar 

  55. De Roo M, Klauser P, Briner A, et al. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One 2009; 4: e7043

    Article  PubMed  Google Scholar 

  56. Todd MM. Anesthetic neurotoxicity: the collision between laboratory neuroscience and clinical medicine. Anesthesiology 2004; 101(2): 272–3

    Article  PubMed  CAS  Google Scholar 

  57. Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalian species. Neuroscience 2001; 105(1): 7–17

    Article  PubMed  CAS  Google Scholar 

  58. Clancy B, Finlay BL, Darlington RB, et al. Extrapolating brain development from experimental species to humans. Neurotoxicology 2007; 28(5): 931–7

    Article  PubMed  Google Scholar 

  59. Petit TL, Le Boutillier JC, Gregorio A, et al. The pattern of dendritic development in the cerebral cortex of the rat. Brain Res 1988; 469(1–2): 209–19

    PubMed  CAS  Google Scholar 

  60. Micheva KD, Beaulieu C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 1996; 373(3): 340–54

    Article  PubMed  CAS  Google Scholar 

  61. De Felipe J, Marco P, Fairen A, et al. Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb Cortex 1997; 7(7): 619–34

    Article  PubMed  Google Scholar 

  62. Lipton SA, Nakanishi N. Shakespeare in love–with NMDA receptors? Nat Med 1999; 5(3): 270–1

    Article  PubMed  CAS  Google Scholar 

  63. Bhutta AT, Anand KJ. Vulnerability of the developing brain: neuronal mechanisms. Clin Perinatol 2002; 29(3): 357–72

    Article  PubMed  CAS  Google Scholar 

  64. Anand KJ, Garg S, Rovnaghi CR, et al. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res 2007; 62(3): 283–90

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi H, Dikkes P, Soriano SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth 2002; 12(9): 770–4

    Article  PubMed  Google Scholar 

  66. Scallet AC, Schmued LC, Slikker WJ, et al. Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci 2004; 81(2): 364–70

    Article  PubMed  CAS  Google Scholar 

  67. Eckenhoff JE. Relationship of anesthesia to postoperative personality changes in children. Am J Dis Children 1953; 86: 587–91

    CAS  Google Scholar 

  68. Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009; 110(4): 796–804

    Article  PubMed  Google Scholar 

  69. Sprung J, Flick RP, Wilder RT, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 2009; 111(2): 302–10

    Article  PubMed  Google Scholar 

  70. DiMaggio C, Sun LS, Kakavouli A, et al. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 2009; 21(4): 286–91

    Article  PubMed  Google Scholar 

  71. Kalkman CJ, Peelen L, Moons KG, et al. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 2009; 110(4): 805–12

    Article  PubMed  Google Scholar 

  72. Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin Res Hum Genet 2009; 12(3): 246–53

    Article  PubMed  Google Scholar 

  73. Davidson AJ, McCann ME, Morton NS, et al. Anesthesia and outcome after neonatal surgery: the role for randomized trials. Anesthesiology 2008; 109(6): 941–4

    Article  PubMed  Google Scholar 

  74. Sun LS, Li G, Dimaggio C, et al. Anesthesia and neurodevelopment in children: time for an answer? Anesthesiology 2008; 109(5): 757–61

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant to Dr Vutskits from the Swiss National Science Foundation, Bern, Switzerland (No. 31003A-130625). The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Vutskits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vutskits, L. Anesthetic-Related Neurotoxicity and the Developing Brain. Pediatr Drugs 14, 13–21 (2012). https://doi.org/10.2165/11592840-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11592840-000000000-00000

Keywords

Navigation