Skip to main content

Developing Brain and Anesthetic Neurotoxicity

  • Chapter
  • First Online:
Fundamentals of Pediatric Neuroanesthesia

Abstract

Within the last decade, animal models of anesthetic neurotoxicity and related developmental disorders have raised concerns for comparable effects in children after exposure to general anesthesia in early infancy. Millions of children undergo surgery during their first 4 years of life worldwide. Delaying non-elective surgical procedures might put children at risk of disease progression including neurodevelopmental impairment. Moreover, controlled anesthetic exposure is difficult to accomplish. This chapter describes the developing brain and different aspects of anesthesia-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss M, Hansen TG, Engelhardt T. Ensuring safe anaesthesia for neonates, infants and young children: what really matters. Arch Dis Child. 2016;101:650.

    Article  CAS  PubMed  Google Scholar 

  2. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ortinau C, Neil J. The neuroanatomy of prematurity: normal brain development and the impact of preterm birth. Clin Anat. 2015;28:168–83.

    Article  PubMed  Google Scholar 

  4. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    Article  CAS  PubMed  Google Scholar 

  5. Ward CG, Loepke AW. Anesthetics and sedatives: toxic or protective for the developing brain? Pharmacol Res. 2012;65:271–4.

    Article  CAS  PubMed  Google Scholar 

  6. Galindo R, Zamudio PA, Valenzuela CF. Alcohol is a potent stimulant of immature neuronal networks: implications for fetal alcohol spectrum disorder. J Neurochem. 2005;94:1500–11.

    Article  CAS  PubMed  Google Scholar 

  7. Yu D, Liu B. Developmental anesthetic neurotoxicity: from animals to humans? J Anesth. 2013;27:750–6.

    Article  PubMed  Google Scholar 

  8. Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia. 2014;69:1009–22.

    Article  CAS  PubMed  Google Scholar 

  9. Palanisamy A. Maternal anesthesia and fetal neurodevelopment. Int J Obstet Anesth. 2012;21:152–62.

    Article  CAS  PubMed  Google Scholar 

  10. Lee JH, Zhang J, Wei L, Yu SP. Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol. 2015;272:50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4:345–56.

    Article  CAS  PubMed  Google Scholar 

  12. Bishop KM, Rubenstein JL, O’Leary DD. Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci. 2002;22:7627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. Science. 2005;310:805–10.

    Article  CAS  PubMed  Google Scholar 

  14. Horng SH, Sur M. Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. Prog Brain Res. 2006;157:3–11.

    Article  PubMed  Google Scholar 

  15. Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol. 1977;1:86–93.

    Article  CAS  PubMed  Google Scholar 

  16. Pakkenberg B, Gundersen HJ. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol. 1997;384:312–20.

    Article  CAS  PubMed  Google Scholar 

  17. Sommer L, Rao M. Neural stem cells and regulation of cell number. Prog Neurobiol. 2002;66:1–18.

    Article  CAS  PubMed  Google Scholar 

  18. Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalian species. Neuroscience. 2001;105:7–17.

    Article  CAS  PubMed  Google Scholar 

  19. Rabinowicz T, de Courten-Myers GM, Petetot JM, Xi G, de los Reyes E. Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. J Neuropathol Exp Neurol. 1996;55:320–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cooper JA. A mechanism for inside-out lamination in the neocortex. Trends Neurosci. 2008;31:113–9.

    Article  CAS  PubMed  Google Scholar 

  21. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci. 2006;9:743–51.

    Article  CAS  PubMed  Google Scholar 

  22. Rivkin MJ, Flax J, Mozell R, Osathanondh R, Volpe JJ, Villa-Komaroff L. Oligodendroglial development in human fetal cerebrum. Ann Neurol. 1995;38:92–101.

    Article  CAS  PubMed  Google Scholar 

  23. Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol. 2009;88:41–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanders RD, Hassell J, Davidson AJ, Robertson NJ, Ma D. Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth. 2013;110:i53–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118:502–15.

    Article  CAS  PubMed  Google Scholar 

  26. Pan Z, Lu XF, Shao C, Zhang C, Yang J, Ma T, et al. The effects of sevoflurane anesthesia on rat hippocampus: a genomic expression analysis. Brain Res. 2011;1381:124–33.

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Ari Y. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience. 2014;279:187–219.

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012;18:467–86.

    Article  PubMed  CAS  Google Scholar 

  29. Lujan R, Shigemoto R, Lopez-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130:567–80.

    Article  CAS  PubMed  Google Scholar 

  30. Heng JI, Moonen G, Nguyen L. Neurotransmitters regulate cell migration in the telencephalon. Eur J Neurosci. 2007;26:537–46.

    Article  PubMed  Google Scholar 

  31. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL. GABA receptor antagonists modulate post-mitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex. 2000;10:899–909.

    Article  CAS  PubMed  Google Scholar 

  32. DiGruccio MR, Joksimovic S, Joksovic PM, Lunardi N, Salajegheh R, Jevtovic-Todorovic V, et al. Hyperexcitability of rat thalamocortical networks after exposure to general anesthesia during brain development. J Neurosci. 2015;35:1481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience. 2005;135:815–27.

    Article  CAS  PubMed  Google Scholar 

  34. Brambrink AM, Back SA, Riddle A, Gong X, Moravec MD, Dissen GA, et al. Isoflurane-induced apoptosis of oligodendrocytes in the neonatal primate brain. Ann Neurol. 2012;72:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner M, Ryu YK, Smith SC, Patel P, Mintz CD. Review: effects of anesthetics on brain circuit formation. J Neurosurg Anesthesiol. 2014;26:358–62.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fang F, Xue Z, Cang J. Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull. 2012;28:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao T, Li Y, Wei W, Savage S, Zhou L, Ma D. Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol Dis. 2014;68:145–55.

    Article  CAS  PubMed  Google Scholar 

  38. Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology. 2009;110:813–25.

    Article  CAS  PubMed  Google Scholar 

  39. Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115:282–93.

    Article  CAS  PubMed  Google Scholar 

  40. Qiu L, Zhu C, Bodogan T, Gomez-Galan M, Zhang Y, Zhou K, et al. Acute and long-term effects of brief sevoflurane anesthesia during the early postnatal period in rats. Toxicol Sci. 2016;149:121–33.

    Article  CAS  PubMed  Google Scholar 

  41. Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98:145–58.

    Article  CAS  PubMed  Google Scholar 

  42. Sanchez V, Feinstein SD, Lunardi N, Joksovic PM, Boscolo A, Todorovic SM, et al. General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain. Anesthesiology. 2011;115:992–1002.

    Article  PubMed  Google Scholar 

  43. Briner A, De Roo M, Dayer A, Muller D, Habre W, Vutskits L. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology. 2010;112:546–56.

    Article  PubMed  Google Scholar 

  44. Cheng Y, He L, Prasad V, Wang S, Levy RJ. Anesthesia-induced neuronal apoptosis in the developing retina: a window of opportunity. Anesth Analg. 2015;121:1325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol. 2005;146:189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizzi S, Carter LB, Ori C, Jevtovic-Todorovic V. Clinical anesthesia causes permanent damage to the fetal Guinea pig brain. Brain Pathol. 2008;18:198–210.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zou X, Liu F, Zhang X, Patterson TA, Callicott R, Liu S, et al. Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol. 2011;33:592–7.

    Article  CAS  PubMed  Google Scholar 

  48. Nyman Y, Fredriksson A, Lonnqvist PA, Viberg H. Etomidate exposure in early infant mice (P10) does not induce apoptosis or affect behaviour. Acta Anaesthesiol Scand. 2016;60:588–96.

    Article  CAS  PubMed  Google Scholar 

  49. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 2009;110:628–37.

    Article  CAS  PubMed  Google Scholar 

  50. Wang S, Peretich K, Zhao Y, Liang G, Meng Q, Wei H. Anesthesia-induced neurodegeneration in fetal rat brains. Pediatr Res. 2009;66:435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu LX, Yon JH, Carter LB, Jevtovic-Todorovic V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis. 2006;11:1603–15.

    Article  CAS  PubMed  Google Scholar 

  52. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee BH, Chan JT, Hazarika O, Vutskits L, Sall JW. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory. PLoS One. 2014;9:e105340.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, et al. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology. 2011;115:979–91.

    Article  PubMed  Google Scholar 

  55. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116:372–84.

    Article  CAS  PubMed  Google Scholar 

  56. Scallet AC, Schmued LC, Slikker W Jr, Grunberg N, Faustino PJ, Davis H, et al. Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci. 2004;81:364–70.

    Article  CAS  PubMed  Google Scholar 

  57. Huang L, Liu Y, Jin W, Ji X, Dong Z. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCgamma-ERK signaling pathway in the developing brain. Brain Res. 2012;1476:164–71.

    Article  CAS  PubMed  Google Scholar 

  58. Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cattano D, Young C, Straiko MM, Olney JW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106:1712–4.

    Article  CAS  PubMed  Google Scholar 

  60. Milanovic D, Popic J, Pesic V, Loncarevic-Vasiljkovic N, Kanazir S, Jevtovic-Todorovic V, et al. Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev Neurosci. 2010;32:288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bercker S, Bert B, Bittigau P, Felderhoff-Muser U, Buhrer C, Ikonomidou C, et al. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res. 2009;16:140–7.

    Article  CAS  PubMed  Google Scholar 

  62. Wang YL, Chen X, Wang ZP. Detrimental effects of postnatal exposure to propofol on memory and hippocampal LTP in mice. Brain Res. 1622;2015:321–7.

    Google Scholar 

  63. Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107:427–36.

    Article  CAS  PubMed  Google Scholar 

  64. Liu F, Paule MG, Ali S, Wang C. Ketamine-induced neurotoxicity and changes in gene expression in the developing rat brain. Curr Neuropharmacol. 2011;9:256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zou X, Patterson TA, Divine RL, Sadovova N, Zhang X, Hanig JP, et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci. 2009;27:727–31.

    Article  CAS  PubMed  Google Scholar 

  66. Hansen TG. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth. 2015;25:65–72.

    Article  PubMed  Google Scholar 

  67. Liu JR, Liu Q, Li J, Baek C, Han XH, Athiraman U, et al. Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology. 2012;117:64–71.

    Article  CAS  PubMed  Google Scholar 

  68. Hansen TG, Lonnqvist PA. The rise and fall of anaesthesia-related neurotoxicity and the immature developing human brain. Acta Anaesthesiol Scand. 2016;60:280–3.

    Article  CAS  PubMed  Google Scholar 

  69. Bong CL, Allen JC, Kim JT. The effects of exposure to general anesthesia in infancy on academic performance at age 12. Anesth Analg. 2013;117:1419–28.

    Article  CAS  PubMed  Google Scholar 

  70. DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Flick RP, Lee K, Hofer RE, Beinborn CW, Hambel EM, Klein MK, et al. Neuraxial labor analgesia for vaginal delivery and its effects on childhood learning disabilities. Anesth Analg. 2011;112:1424–31.

    Article  PubMed  Google Scholar 

  72. Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS, et al. Academic performance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology. 2011;114:1076–85.

    Article  PubMed  Google Scholar 

  73. Hansen TG, Pedersen JK, Henneberg SW, Morton NS, Christensen K. Educational outcome in adolescence following pyloric stenosis repair before 3 months of age: a nationwide cohort study. Paediatr Anaesth. 2013;23:883–90.

    Article  PubMed  Google Scholar 

  74. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol. 2009;21:286–91.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McCann ME, de Graaff JC, Dorris L, Disma N, Withington D, Bell G, et al. For the GAS consortium. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393:664–77.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vutskits L. More than anyone Else: preemies need good analgesia. Anesthesiology. 2016;124:758–60.

    Article  PubMed  Google Scholar 

  77. Sun LS, Li G, DiMaggio CJ, Byrne MW, Ing C, Miller TL, et al. Feasibility and pilot study of the pediatric anesthesia neuro development assessment (PANDA) project. J Neurosurg Anesthesiol. 2012;24:382–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130:e476–85.

    Article  PubMed  Google Scholar 

  79. Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin Res Hum Genet. 2009;12:246–53.

    Article  PubMed  Google Scholar 

  80. Backeljauw B, Holland SK, Altaye M, Loepke AW. Cognition and brain structure following early childhood surgery with anesthesia. Pediatrics. 2015;136:e1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, et al. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child. Cochrane Database Syst Rev. 2014;10:CD010236.

    Google Scholar 

  82. Sprung J, Flick RP, Wilder RT, Katusic SK, Pike TL, Dingli M, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;111:302–10.

    Article  PubMed  Google Scholar 

  83. Filan PM, Hunt RW, Anderson PJ, Doyle LW, Inder TE. Neurologic outcomes in very preterm infants undergoing surgery. J Pediatr. 2012;160:409–14.

    Article  PubMed  Google Scholar 

  84. Duerden EG, Guo T, Dodbiba L, Chakravarty MM, Chau V, Poskitt KJ, et al. Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants. Ann Neurol. 2016;79:548–59.

    Article  CAS  PubMed  Google Scholar 

  85. Roze JC, Denizot S, Carbajal R, Ancel PY, Kaminski M, Arnaud C, et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: results from the EPIPAGE cohort. Arch Pediatr Adolesc Med. 2008;162:728–33.

    Article  PubMed  Google Scholar 

  86. Walker K, Halliday R, Holland AJ, Karskens C, Badawi N. Early developmental outcome of infants with infantile hypertrophic pyloric stenosis. J Pediatr Surg. 2010;45:2369–72.

    Article  PubMed  Google Scholar 

  87. Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117:494–503.

    Article  PubMed  Google Scholar 

  88. DiMaggio C, Sun LS, Ing C, Li G. Pediatric anesthesia and neurodevelopmental impairments: a Bayesian meta-analysis. J Neurosurg Anesthesiol. 2012;24:376–81.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ing CH, DiMaggio CJ, Malacova E, Whitehouse AJ, Hegarty MK, Feng T, et al. Comparative analysis of outcome measures used in examining neurodevelopmental effects of early childhood anesthesia exposure. Anesthesiology. 2014;120:1319–32.

    Article  CAS  PubMed  Google Scholar 

  90. Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanic K, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc. 2012;87:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vutskits L, Culley DJ. GAS, PANDA, and MASK: no evidence of clinical Anesthetic neurotoxicity! Anesthesiology. 2019;131:762–4.

    Article  PubMed  Google Scholar 

  92. O’Leary JD. Human studies of Anesthesia-related neurotoxicity in children: a narrative review of recent additions to the clinical literature. Clin Perinatol. 2019;46:637–45.

    Article  PubMed  Google Scholar 

  93. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796–804.

    Article  PubMed  Google Scholar 

  94. Yan J, Li YR, Zhang Y, Lu Y, Jiang H. Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J Child Neurol. 2014;29:1333–8.

    Article  PubMed  Google Scholar 

  95. Bhutta AT, Schmitz ML, Swearingen C, James LP, Wardbegnoche WL, Lindquist DM, et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 2012;13:328–37.

    Article  PubMed  Google Scholar 

  96. Taghon TA, Masunga AN, Small RH, Kashou NH. A comparison of functional magnetic resonance imaging findings in children with and without a history of early exposure to general anesthesia. Paediatr Anaesth. 2015;25:239–46.

    Article  PubMed  Google Scholar 

  97. Oba S, Işıl CT, Türk HŞ, Karamürsel S, Aksu S, Kaba M, Kılınç L, Dokucu AI. Evaluation of neurotoxicity of multiple anesthesia in children using visual evoked potentials. Sisli Etfal Hastan Tip Bul. 2019;53:284–9.

    PubMed  PubMed Central  Google Scholar 

  98. Moffitt TE, Houts R, Asherson P, Belsky DW, Corcoran DL, Hammerle M, et al. Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. Am J Psychiatry. 2015;172:967–77.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, et al. Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity. Neurobiol Dis. 2004;15:177–87.

    Article  CAS  PubMed  Google Scholar 

  100. Tsuchimoto T, Ueki M, Miki T, Morishita J, Maekawa N. Erythropoietin attenuates isoflurane-induced neurodegeneration and learning deficits in the developing mouse brain. Paediatr Anaesth. 2011;21:1209–13.

    Article  PubMed  Google Scholar 

  101. Ma D, Williamson P, Januszewski A, Nogaro MC, Hossain M, Ong LP, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106:746–53.

    Article  CAS  PubMed  Google Scholar 

  102. Cattano D, Williamson P, Fukui K, Avidan M, Evers AS, Olney JW, et al. Potential of xenon to induce or to protect against neuroapoptosis in the developing mouse brain. Can J Anaesth. 2008;55:429–36.

    Article  PubMed  Google Scholar 

  103. Shu Y, Patel SM, Pac-Soo C, Fidalgo AR, Wan Y, Maze M, et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010;113:360–8.

    Article  CAS  PubMed  Google Scholar 

  104. Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110:1077–85.

    Article  CAS  PubMed  Google Scholar 

  105. Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010;54:710–6.

    Article  CAS  PubMed  Google Scholar 

  106. Li Y, Zeng M, Chen W, Liu C, Wang F, Han X, et al. Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats. PLoS One. 2014;9:e93639.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ponten E, Viberg H, Gordh T, Eriksson P, Fredriksson A. Clonidine abolishes the adverse effects on apoptosis and behaviour after neonatal ketamine exposure in mice. Acta Anaesthesiol Scand. 2012;56:1058–65.

    Article  CAS  PubMed  Google Scholar 

  108. Straiko MM, Young C, Cattano D, Creeley CE, Wang H, Smith DJ, et al. Lithium protects against anesthesia-induced developmental neuroapoptosis. Anesthesiology. 2009;110:862–8.

    Article  CAS  PubMed  Google Scholar 

  109. Fan X, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F. Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr Neuropharmacol. 2010;8:324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yon JH, Carter LB, Reiter RJ, Jevtovic-Todorovic V. Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis. 2006;21:522–30.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Liang G, Chen Q, Joseph DJ, Meng Q, Eckenhoff RG, et al. Anesthetic-induced neurodegeneration mediated via inositol 1,4,5-trisphosphate receptors. J Pharmacol Exp Ther. 2010;333:14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ward CG, Hines SJ, Maxwell LG, McGowan FX, Sun LS. Neurotoxicity, general anesthesia in young children, and a survey of current pediatric anesthesia practice at US teaching institutions. Paediatr Anaesth. 2016;26:60–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio D. Bergese .

Editor information

Editors and Affiliations

Ethics declarations

Nil.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergese, S.D., Sacchet-Cardozo, F. (2021). Developing Brain and Anesthetic Neurotoxicity. In: Rath, G.P. (eds) Fundamentals of Pediatric Neuroanesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-16-3376-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3376-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3375-1

  • Online ISBN: 978-981-16-3376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics