Skip to main content
Log in

Is Antiarrhythmic Treatment in the Elderly Different?

A Review of the Specific Changes

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Aging is associated with electrical and structural changes of the myocardium. The response to catecholamines is also reduced and the baroreceptor reflex activity is blunted. These aspects conceivably affect the response to antiarrhythmic drugs in the elderly. Furthermore, physiological parameters change in older age, affecting the pharmacokinetics of drugs. In this article, the literature on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs in elderly subjects is reviewed with the purpose of improving their optimal and safe prescription.

Pharmacokinetic studies of antiarrhythmic drugs in the elderly are sparse, and there are no data available for procainamide and propafenone. Mean dose reductions calculated for elderly patients relative to younger patients are 60% for digoxin, 19% for diltiazem, 32% for disopyramide, 31% for flecainide, 40% for metoprolol, 35% for quinidine, 29% for sotalol and 26% for verapamil. No dose reductions are required for dofetilide or dronedarone. The clearance of dofetilide is not affected by age after correction for renal function. The dosage of dofetilide is individualized according to an algorithm based on the corrected QT (QTc) interval and renal function. Although the area under the plasma concentration-time curve (AUC) for dronedarone is larger in elderly patients, the dose should not be reduced because the registered dose has specifically been studied in an elderly population. In elderly patients with renal insufficiency, hepatic impairment, heart failure or certain genetic variants, the pharmacokinetics of antiarrhythmic drugs might be affected to an even greater extent, meaning additional dosage adjustments are necessary.

With increasing age, the number of prescribed drugs increases because of co-morbidity, making interactions between drugs more likely. Several drugs interact with antiarrhythmic drugs, leading to clinically relevant changes in drug concentrations or AUC values. Furthermore, several drugs with non-cardiovascular indications appear to have QTc prolonging effects. The combination of these drugs with antiarrhythmic drugs that affect the QTc interval increases the risk of developing torsades de pointes and should therefore be avoided.

Altered effects of drugs in the elderly can also be the result of age-related changes in the cardiovascular system. For example, atenolol and sotalol show greater effects, i.e. reductions in heart rate and increased probability of adverse effects, at a given plasma concentration in older subjects compared with younger subjects.

It remains unclear whether old age as such is a determinant for reduced or modified efficacy of antiarrhythmic drugs. In a randomized study it was found that patients aged ≥65 years with atrial fibrillation had better survival with rate control than with rhythm control. However, different treatment strategies were compared and the results cannot be extrapolated to indicate better survival with a specific antiarrhythmic drug.

Antiarrhythmic drugs will remain the first-line approach in most patients for the prevention or suppression of atrial and ventricular arrhythmias. As a rule of thumb, a 50% reduction in the starting dose of antiarrhythmic drugs compared with younger patients appears a wise approach in elderly patients. However, this does not apply to dofetilide and dronedarone. The selection of antiarrhythmic drugs in the elderly is predominantly determined by factors such as the treatment target, assumed patient compliance, possible drug interactions, co-morbidity, and renal and liver function. Efficacy and safety monitoring should take into account symptoms, ECG findings, rhythm recordings, plasma drug concentrations and other laboratory parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Fig. 1
Fig. 2
Fig. 3
Table V

Similar content being viewed by others

References

  1. Barbey JT, Sale ME, Woosley RL, et al. Pharmacokinetic, pharmacodynamic, and safety evaluation of an accelerated dose titration regimen of sotalol in healthy middle-aged subjects. Clin Pharmacol Ther 1999; 66: 91–9

    Article  PubMed  CAS  Google Scholar 

  2. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989; 321: 406–12

    Article  Google Scholar 

  3. Tulner LR, Frankfort SV, Gijsen GJ, et al. Drug-drug interactions in a geriatric outpatient cohort: prevalence and relevance. Drugs Aging 2008; 25: 343–55

    Article  PubMed  Google Scholar 

  4. Kannankeril PJ. Understanding drug-induced torsades de pointes: a genetic stance. Expert Opin Drug Saf 2008; 7: 231–9

    Article  PubMed  CAS  Google Scholar 

  5. Mann DM, Woodward M, Muntner P, et al. Predictors of nonadherence to statins: a systematic review and meta-analysis. Ann Pharmacother 2010; 44: 1410–21

    Article  PubMed  Google Scholar 

  6. Escande D, Loisance D, Planche C, et al. Age-related changes of action potential plateau shape in isolated human atrial fibers. Am J Physiol 1985; 249: H843–50

    PubMed  CAS  Google Scholar 

  7. Kavanagh KM, Wyse DG, Mitchell LB, et al. Cardiac refractoriness: age-dependence in normal subjects. J Elec-trocardiol 1989; 22: 221–5

    CAS  Google Scholar 

  8. Huang CC, Sandroni P, Sletten DM, et al. Effect of age on adrenergic and vagal baroreflex sensitivity in normal subjects. Muscle Nerve 2007; 36: 637–42

    Article  PubMed  Google Scholar 

  9. Sachs C, Hamberger B, Kaijser L. Cardiovascular responses and plasma catecholamines in old age. Clin Physiol 1985; 5: 553–65

    Article  PubMed  CAS  Google Scholar 

  10. Brodde OE, Anlauf M, Graben N, et al. Age-dependent decrease of alpha 2-adrenergic receptor number in human platelets. Eur J Pharmacol 1982; 81: 345–7

    Article  PubMed  CAS  Google Scholar 

  11. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace 2010; 12: 1360–20

    Article  PubMed  Google Scholar 

  12. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death - executive summary: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Eur Heart J 2006; 27: 2099–140

    Article  PubMed  Google Scholar 

  13. Hammerlein A, Derendorf H, Lowenthal DT. Pharm-acokinetic and pharmacodynamic changes in the elderly: clinical implications. Clin Pharmacokinet 1998; 35: 49–64

    Article  PubMed  CAS  Google Scholar 

  14. Grandison MK, Boudinot FD. Age-related changes in protein binding of drugs: implications for therapy. Clin Phar-macokinet 2000; 38: 271–90

    Article  CAS  Google Scholar 

  15. Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 2005; 44: 33–60

    Article  PubMed  CAS  Google Scholar 

  16. Tett SE, Kirkpatrick CM, Gross AS, et al. Principles and clinical application of assessing alterations in renal elimination pathways. Clin Pharmacokinet 2003; 42: 1193–211

    Article  PubMed  Google Scholar 

  17. Sowinski KM, Forrest A, Wilton JH, et al. Effect ofaging on atenolol pharmacokinetics and pharmacodynamics. J Clin Pharmacol 1995; 35: 807–14

    PubMed  CAS  Google Scholar 

  18. Priebe HJ. The aged cardiovascular risk patient. Br J An-aesth 2000; 85: 763–78

    CAS  Google Scholar 

  19. McEvoy GK, editor. AHFS drug information 2006. Be-thesda (MD): American Society of Health-System Pharmacists, Inc., 2006

    Google Scholar 

  20. Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. Br J Clin Pharmacol 1998; 46: 307–19

    Article  PubMed  CAS  Google Scholar 

  21. Fukuchi H, Nakashima M, Araki R, et al. Effect of obesity on serum amiodarone concentration in Japanese patients: population pharmacokinetic investigation by multiple trough screen analysis. J Clin Pharm Ther 2009; 34: 329–36

    Article  PubMed  CAS  Google Scholar 

  22. Cusack B, Kelly J, O’Malley K, et al. Digoxin in the elderly: pharmacokinetic consequences of old age. Clin Pharmacol Ther 1979; 25: 772–6

    PubMed  CAS  Google Scholar 

  23. Latini R, MagnolfiG, Zordan R, et al. Antiarrhythmic drug plasma concentrations in ambulatory patients. Ann Pharmacother 1996; 30: 298–300

    PubMed  CAS  Google Scholar 

  24. Abernethy DR, Montamat SC. Acute and chronic studies of diltiazem in elderly versus young hypertensive patients. Am J Cardiol 1987; 60: 116I–20I

    Article  PubMed  CAS  Google Scholar 

  25. Bianchetti G, Billy S, Ascalone V, et al. Multicenter studies on the pharmacokinetic profile of sustained-release oral diltiazem (300mg) after once a day repeated administration: influence of age. Int J Clin Pharmacol Ther 1996; 34: 195–201

    PubMed  CAS  Google Scholar 

  26. Bonde J, Pedersen LE, Bodtker S, et al. The influence of age and smoking on the elimination of disopyramide. Br J Clin Pharmacol 1985; 20: 453–8

    Article  PubMed  CAS  Google Scholar 

  27. Roberto P, Vitaliano B, Donatella P, et al. Disopyramide pharmacokinetics in the elderly after single oral administration. Pharmacol Res Commun 1988; 20: 1025–34

    Article  PubMed  CAS  Google Scholar 

  28. Tikosyn (dofetilide) tablets: US prescribing information. Pfizer, 2009 [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/1999/20931lbl.pdf [Accessed 2009 Sep 30]

  29. Hoy SM, Keam SJ. Dronedarone. Drugs 2009; 69: 1647–63

    Article  PubMed  CAS  Google Scholar 

  30. Multaq (dronedarone) tablets: EU prescribing information. Sanofi-Aventis, 2009 [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001043/WC500044534.pdf [Accessed 2009 Dec 19]

  31. Doki K, Homma M, Kuga K, et al. Gender-associated differences in pharmacokinetics and anti-arrhythmic effects of flecainide in Japanese patients with supraventricular tachyarrhythmia. Eur J Clin Pharmacol 2007; 63: 951–7

    Article  PubMed  CAS  Google Scholar 

  32. Quarterman CP, Kendall MJ, Jack DB. The effect of age on the pharmacokinetics of metoprolol and its metabolites. Br J Clin Pharmacol 1981; 11: 287–94

    Article  PubMed  CAS  Google Scholar 

  33. Ochs HR, Greenblatt DJ, Woo E, et al. Reduced quinidine clearance in elderly persons. Am J Cardiol 1978; 42: 481–5

    Article  PubMed  CAS  Google Scholar 

  34. Ishizaki T, Hirayama H, Tawara K, et al. Pharmacokinetics and pharmacodynamics in young normal and elderly hypertensive subjects: a study using sotalol as a model drug. J Pharmacol Exp Ther 1980; 212: 173–81

    PubMed  CAS  Google Scholar 

  35. Ahmed JH, Meredith PA, Elliott HL. The influence of age on the pharmacokinetics of verapamil. Pharmacol Res 1991; 24: 227–33

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz JB, Capili H, Wainer IW. Verapamil stereoisomers during racemic verapamil administration: effects of aging and comparisons to administration of individual stereo-isomers. Clin Pharmacol Ther 1994; 56: 368–76

    Article  PubMed  CAS  Google Scholar 

  37. Schwartz JB, Capili H, Daugherty J. Aging of women alters S-verapamil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1994; 55: 509–17

    Article  PubMed  CAS  Google Scholar 

  38. Abernethy DR, Wainer IW, Anacleto AI. Verapamil metabolite exposure in older and younger men during steady-state oral verapamil administration. Drug Metab Dispos 2000; 28: 760–5

    PubMed  CAS  Google Scholar 

  39. Carosella L, Menichelli P, Alimenti M, et al. Verapamil disposition and cardiovascular effects in elderly patients after single intravenous and oral doses. Cardiovasc Drugs Ther 1989; 3: 417–25

    Article  PubMed  CAS  Google Scholar 

  40. Kurosawa S, Kurosawa N, Owada E, et al. Pharmacokine-tics of diltiazem in patients with liver cirrhosis. Int J Clin Pharmacol Res 1990; 10: 311–8

    PubMed  CAS  Google Scholar 

  41. Bonde J, Graudal NA, Pedersen LE, et al. Kinetics of dis-opyramide in decreased hepatic function. Eur J Clin Pharmacol 1986; 31: 73–7

    Article  PubMed  CAS  Google Scholar 

  42. McQuinn RL, Pentikainen PJ, Chang SF, et al. Pharmaco-kinetics of flecainide in patients with cirrhosis of the liver. Clin Pharmacol Ther 1988; 44: 566–72

    Article  PubMed  CAS  Google Scholar 

  43. Regardh CG, Jordo L, Ervik M, et al. Pharmacokinetics of metoprolol in patients with hepatic cirrhosis. Clin Phar-macokinet 1981; 6: 375–88

    Article  CAS  Google Scholar 

  44. Lee JT, Yee YG, Dorian P, et al. Influence of hepatic dysfunction on the pharmacokinetics of propafenone. J Clin Pharmacol 1987; 27: 384–9

    PubMed  CAS  Google Scholar 

  45. Kessler KM, Humphries Jr WC, Black M, et al. Quinidine pharmacokinetics in patients with cirrhosis or receiving propranolol. Am Heart J 1978; 96: 627–35

    Article  PubMed  CAS  Google Scholar 

  46. Sotaniemi EA, Pelkonen RO, Arranto AJ, et al. Effect of liver function on beta-blocker kinetics. Drugs 1983; 113–20

    Google Scholar 

  47. Woodcock BG, Rietbrock I, Vohringer HF, et al. Verapamil disposition in liver disease and intensive-care patients: kinetics, clearance, and apparent blood flow relationships. Clin Pharmacol Ther 1981; 29: 27–34

    Article  PubMed  CAS  Google Scholar 

  48. Franciosa JA, Wilen M, Weeks CE, et al. Pharmacokinetics and hemodynamic effects of flecainide in patients with chronic low output heart failure [letter]. J Am Coll Cardiol 2008; 1: 699

    Google Scholar 

  49. Ueda CT, Dzindzio BS. Bioavailability of quinidine in congestive heart failure. Br J Clin Pharmacol 1981; 11: 571–7

    Article  PubMed  CAS  Google Scholar 

  50. Ohnhaus EE, Spring P, Dettli L. Elimination kinetics and dosage of digoxin in patients in renal failure. Dtsch Med Wochenschr 1974; 99: 1797–803

    Article  PubMed  CAS  Google Scholar 

  51. Shen DD, Cunningham JL, Shudo I, et al. Disposition kinetics of disopyramide in patients with renal insufficiency. Biopharm Drug Dispos 1980; 1: 133–40

    Article  PubMed  CAS  Google Scholar 

  52. Mokdad AH, Bowman BA, Ford ES, et al. The continuing epidemics of obesity and diabetes in the United Sates. JAMA 2001; 286: 1195–200

    Article  PubMed  CAS  Google Scholar 

  53. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 2000; 39: 215–31

    Article  PubMed  CAS  Google Scholar 

  54. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect ofobesity on the pharmacokinetics of drugs in humans. Clin Phar-macokinet 2010; 49: 71–87

    Article  CAS  Google Scholar 

  55. Poirier JM, Le JC, Cheymol G, et al. Comparison of pro-pranolol and sotalol pharmacokinetics in obese subjects. J Pharm Pharmacol 1990; 42: 344–8

    Article  PubMed  CAS  Google Scholar 

  56. Chou WH, Yan FX, Robbins-Weilert DK, et al. Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem 2003; 49: 542–51

    Article  PubMed  CAS  Google Scholar 

  57. Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95

    PubMed  CAS  Google Scholar 

  58. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharma-cogenomics 2002; 3: 229–43

    CAS  Google Scholar 

  59. Swen JJ, Wilting I, de Goede AL, et al. Pharmacogenetics: from bench to byte. Clin Pharmacol Ther 2008; 83: 781–7

    Article  PubMed  CAS  Google Scholar 

  60. Aarnoudse AJ, Dieleman JP, Visser LE, et al. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics 2008; 18: 299–305

    Article  PubMed  CAS  Google Scholar 

  61. Baxter KE, editor. Stockley’s drug interactions. 8th ed. London: Pharmaceutical Press, 2007

    Google Scholar 

  62. Pieroni RE, Marshall J. Fatal digoxin-quinidine interaction in an elderly woman. J Am Geriatr Soc 1981; 29: 422–5

    PubMed  CAS  Google Scholar 

  63. Nigam SK, Burton ME, Vasko MR. Quinidine-induced di-goxin toxicity after discontinuing digoxin in a patient with renal failure. Clin Pharm 1984; 3: 662–4

    PubMed  CAS  Google Scholar 

  64. Johnson JA, Burlew BS. Metoprolol metabolism via cyto-chrome P4502D6 in ethnic populations. Drug Metab Dispos 1996; 24: 350–5

    PubMed  CAS  Google Scholar 

  65. Werner D, Wuttke H, Fromm MF, et al. Effect of amiodarone on the plasma levels of metoprolol. Am J Cardiol 2004; 94: 1319–21

    Article  PubMed  CAS  Google Scholar 

  66. Goryachkina K, Burbello A, Boldueva S, et al. Inhibition of metoprolol metabolism and potentiation of its effects by par-oxetine in routinely treated patients with acute myocardial infarction (AMI). Eur J Clin Pharmacol 2008; 64: 275–82

    Article  PubMed  CAS  Google Scholar 

  67. QTdrugs.org Advisory Board. Torsades list, 2008 [online]. Available from URL: http://www.Azcert.org/medical-pros/drug-lists/bycategorycfm# [Accessed 2008 Nov 29]

  68. Woodland C, Verjee Z, Giesbrecht E, et al. The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J Pharmacol Exp Ther 1997; 283: 39–45

    PubMed  CAS  Google Scholar 

  69. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997; 19: 609–13

    Article  PubMed  CAS  Google Scholar 

  70. Libersa CC, Brique SA, Motte KB, et al. Dramatic inhibition of amiodarone metabolism induced by grapefruit juice. Br J Clin Pharmacol 2000; 49: 373–8

    Article  PubMed  CAS  Google Scholar 

  71. Kanebratt KP, Diczfalusy U, Backstrom T, et al. Cyto-chrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin Pharmacol Ther 2008; 84: 589–94

    Article  PubMed  CAS  Google Scholar 

  72. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med 2004; 350: 1013–22

    Article  PubMed  CAS  Google Scholar 

  73. Salerno DM, Granrud G, Sharkey P, et al. Pharmaco-dynamics and side effects of flecainide acetate. Clin Pharmacol Ther 1986; 40: 101–7

    Article  PubMed  CAS  Google Scholar 

  74. Atarashi H, Ogawa S, Inoue H, et al. Dose-response effect of flecainide in patients with symptomatic paroxysmal atrial fibrillation and/or flutter monitored with trans-telephonic electrocardiography: a multicenter, placebo-controlled, double-blind trial. Circ J 2007; 71: 294–300

    Article  PubMed  CAS  Google Scholar 

  75. Pritchett EL, DaTorre SD, Platt ML, et al. Flecainide acetate treatment of paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation: dose-response studies. The Flecainide Supraventricular Tachycardia Study Group. J Am Coll Cardiol 1991; 17: 297–303

    Article  PubMed  CAS  Google Scholar 

  76. Deneer VH. Episodic treatment and prevention of paroxysmal atrial fibrillation: studies with flecainide and sotalol [dissertation]. Groningen: University of Groningen, 2003

    Google Scholar 

  77. Deneer VH, Lie AH, Kingma JH, et al. Absorption kinetics and pharmacodynamics of two oral dosage forms of fle-cainide in patients with an episode of paroxysmal atrial fibrillation. Eur J Clin Pharmacol 2004; 60: 693–701

    Article  PubMed  CAS  Google Scholar 

  78. Yamada Y, Shiga T, Matsuda N, et al. Incidence and predictors of pulmonary toxicity in Japanese patients receiving low-dose amiodarone. Circ J 2007; 71: 1610–6

    Article  PubMed  CAS  Google Scholar 

  79. Vassallo P, Trohman RG. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA 2007; 298: 1312–22

    Article  PubMed  CAS  Google Scholar 

  80. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501–9

    Article  PubMed  CAS  Google Scholar 

  81. Stelfox HT, Ahmed SB, Fiskio J, et al. Monitoring amio-darone’s toxicities: recommendations, evidence, and clinical practice. Clin Pharmacol Ther 2004; 75: 110–22

    Article  PubMed  CAS  Google Scholar 

  82. Ahmad S. Amiodarone and lipid disorder [letter]. Arch Intern Med 1995; 155: 1912

    Article  PubMed  CAS  Google Scholar 

  83. Pollak PT, Sharma AD, Carruthers SG. Elevation ofserum total cholesterol and triglyceride levels during amiodarone therapy. Am J Cardiol 1988; 62: 562–5

    Article  PubMed  CAS  Google Scholar 

  84. Fetsch T, Bauer P, Engberding R, et al. Prevention ofatrial fibrillation after cardioversion: results of the PAFAC trial. Eur Heart J 2004; 25: 1385–94

    Article  PubMed  Google Scholar 

  85. Barsky AJ. Palpitations, arrhythmias, and awareness of cardiac activity. Ann Intern Med 2001; 134: 832–7

    PubMed  CAS  Google Scholar 

  86. Siu LL. Clinical trials in the elderly: a concept comes of age. N Engl J Med 2007; 356: 1575–6

    Article  PubMed  CAS  Google Scholar 

  87. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002; 347: 1825–33

    Article  PubMed  CAS  Google Scholar 

  88. Hohnloser SH, Crijns HJ, van EM, et al. Effect of drone-darone on cardiovascular events in atrial fibrillation. N Engl J Med 2009; 360: 668–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera H. M. Deneer.

Appendices

Appendices

Appendix A

Calculation of Creatinine Clearance

The extent to which renal function is decreased can be estimated by measuring serum creatinine and calculating the creatinine clearance by the Cockcroft and Gault equation (equation 1). This equation can be used in the setting of stable kidney function.

Cockcroft and Gault equation:

$$\matrix{{{\rm{For\;male\;patients:}}} \cr {{\rm{Creatinine\;clearance}}[{\rm{mL}}/\min ] = {{(140 - {\rm{age}}[{\rm{y}}]) \times {\rm{bodyweight}}[{\rm{kg}}]} \over {0.815 \times {\rm{serum\;creatinine}}[\mu {\rm{mol}}/{\rm{L}}]}}} \cr {{\rm{For\;female\;patients}}:} \cr {{\rm{Creatinine\;clearance}}[{\rm{mL}}/\min ] = {\rm{as\;for\;male\;patients\;but\;multiplied\;by\;a\;factor\;of}}0.85} \cr }$$
((Eq. 1))

Appendix B

Example of Calculation ofSotalol Clearance in Renal Insufficiency and Calculation of Dosage Adjustment

From the study of Ishizaki et al.,[34] it can be extrapolated from the sotalol specific model that (equation 2):

$${\rm{Sotalol\;total\;clearance}}[{\rm{mL}}/\min ] = 84.7[{\rm{mL}}/\min ] + 2 \times {\rm{creatinine\;clearance}}[{\rm{mL}}/\min ]$$
((Eq. 2))

Thus, in a patient with a creatinine clearance of 30 mL/min, the sotalol clearance is (equation 3):

$$\matrix{{{\rm{Sotalol\;total\;clearance}}[{\rm{mL}}/\min ]} \cr { = 84.7[{\rm{mL}}/\min ] + 2 \times 30[{\rm{mL}}/\min ]} \cr { = 145\;{\rm{mL}}/\min } \cr }$$
((Eq. 3))

From the study of Ishizaki et al.,[34] it can be extrapolated that sotalol total clearance in healthy subjects is 377 mL/min, based on the reported mean clearance and mean bodyweight of healthy subjects.

Similar to the equation in Appendix D that calculates dose adjustments based on clearance data for elderly versus young patients, the dose adjustment can be calculated as follows (equation 4):

$$\matrix{{{\rm{Dose\;adjustmen}}{{\rm{t}}_{{\rm{renal}}\_{\rm{insufficiency}}}}[\% ]} \cr { = (1 - {\rm{clearanc}}{{\rm{e}}_{{\rm{renal}}\_{\rm{insufficiency}}}}/{\rm{clearanc}}{{\rm{e}}_{{\rm{healthy}}}}) \times 100\% } \cr { = (1 - 145/377) \times 100\% } \cr { = 62\% } \cr }$$
((Eq. 4))

Appendix C

Area under the Plasma Concentration-Time Curve

The area under the plasma concentration-time curve (AUC) [see figure A1, grey-shaded area] is a measure of the systemic exposure to a particular drug. For example, if the drug displays linear pharmacokinetics, a 50% reduction in clearance will result in a 2-fold increase in the AUC.

Fig. A1
figure 4

Area under the plasma concentration-time curve after ingestion of an oral formulation of the drug.

Appendix D

Calculation of Dose Adjustments

The following formulas were used to calculate dose adjustments (equations 5 and 6):

$${\rm{Dose\;adjustmen}}{{\rm{t}}_{{\rm{elderly}}}}[\% ] = (1 - {\rm{clearanc}}{{\rm{e}}_{{\rm{elderly}}}}/{\rm{clearanc}}{{\rm{e}}_{{\rm{young}}}}) \times 100\% $$
((Eq. 5))
$${\rm{Dose\;adjustmen}}{{\rm{t}}_{{\rm{elderly}}}}[\% ] = (1 - {\rm{AU}}{{\rm{C}}_{{\rm{young}}}}/{\rm{AU}}{{\rm{C}}_{{\rm{elderly}}}}) \times 100\% $$
((Eq. 6))

For equation 6, if applicable, area under the plasma concentration-time curve (AUC) values can be replaced by plasma concentration data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deneer, V.H.M., van Hemel, N.M. Is Antiarrhythmic Treatment in the Elderly Different?. Drugs Aging 28, 617–633 (2011). https://doi.org/10.2165/11591680-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11591680-000000000-00000

Keywords

Navigation