Skip to main content

Advertisement

Log in

Evaluation of Process Efficiency and Bioequivalence of Biosimilar Recombinant Human Chorionic Gonadotropin (rhCG)

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background

Human chorionic gonadotropin (hCG) is a therapeutic protein used for ovulation induction in women with infertility. Dong-A Pharm. Co. has developed recombinant hCG (rhCG) [product code DA-3803] produced in Chinese hamster ovary cells and evaluated its biologic properties, such as biologic potency, efficacy, and pharmacokinetic profile, compared with a reference product, Ovidrel®.

Objective

The purpose of this study was to evaluate the efficiency of the purification process of Dong-A rhCG (DA-3803) and its bioequivalence from a biosimilar perspective.

Methods

The efficiency of the purification process was estimated through scale-down clearance studies for viruses, endotoxins, host cell DNAs (HCDs) and host cell proteins (HCPs). To confirm bioequivalence, the in vivo/in vitro biologic potency, ovulation induction rate, and pharmacokinetic profile of DA-3803 were compared with those of Ovidrel®.

Results

In the clearance studies, the lowest log reduction value (LRV) for model viruses was 8.43. LRVs for endotoxins, HCDs, and HCPs were greater than 5.27, 16.36, and 3.37, respectively. DA-3803 showed equivalent potency with Ovidrel®, and similarity between DA-3803 and Ovidrel® was observed in an efficacy evaluation that measured ovulation induction. The bioequivalence was also confirmed in a rat pharmacokinetic study, which compared pharmacokinetic parameters such as maximum serum concentration, area under the concentration-time curve, time to reach maximum serum concentration, and half-life. In a comparison of different isoform groups of DA-3803, it was shown that the potency and pharmacokinetic profile depend on the sialic acid content.

Conclusion

The purification process of DA-3803 was effective in removing the major process impurities, and DA-3803 showed similar biologic properties to the reference drug, Ovidrel®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III
Fig. 3
Fig. 4
Fig. 5
Table IV
Table V

Similar content being viewed by others

References

  1. Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Ann Rev Biochem 1981; 50: 465–95

    Article  PubMed  CAS  Google Scholar 

  2. Hutchison-Williams KA, Diamond MP, DeCherney AH, et al. Luteal rescue in in vitro fertilization-embryo transfer. Fertil Steril 1990; 53: 495–501

    Google Scholar 

  3. Dickerman Z, Bauman B, Sandovsky U, et al. Human chorionic gonadotropin(hCG) treatment in cryptorchidism. Andrologia 1983; 15: 542–7

    Article  PubMed  Google Scholar 

  4. Committee for Medicinal Products for Human Use. Guideline on similar biological medicinal products. London: EMEA, 2005. Report no.: CHMP/437/04

  5. Committee for Medicinal Products for Human Use. Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues. London: EMEA, 2006. Report no.: CHMP/ BWP/49348/2005

  6. Committee for Medicinal Products for Human Use. Note for guidance on virus validation studies. London: EMEA, 1996. Report no.: CPMP/BWP/268/95 [final version 2]

  7. Larzul D. Viral validation design of a manufacturing process. Dev Biol Stand 1999; 99: 139–50

    PubMed  CAS  Google Scholar 

  8. Committee for Medicinal Products for Human Use. CPMP position statement on DNA and host cell proteins (HCP) impurities, routine testing versus validation studies. London: EMEA, 1997

  9. WHO Expert Committee on Biological Standardisation. Highlights of the 46th meeting, October 1996. WHO Week Epidemiol Rec 1997; 72: 141–5

    Google Scholar 

  10. Wang X, Hunter AK, Mozier NM. Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng 2009; 103(3): 446–58

    Article  PubMed  CAS  Google Scholar 

  11. Ertzeid G, Storeng R. Adverse effects of gonadotrophin treatment on pre-and post-implantation development in mice. J Reprod Fertil 1992; 96: 649–55

    Article  PubMed  CAS  Google Scholar 

  12. Ertzeid G, Storeng R, Lyberg T. Treatment with gonadotrophins impaired implantation and fetal development in mice. J Assist Reprod Genet 1993; 10(4): 286–91

    Article  PubMed  CAS  Google Scholar 

  13. Storring PL, Tiplady RJ, Gaines Das RE, et al. Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties. Br J Haematol 1998; 100: 79–89

    Article  PubMed  CAS  Google Scholar 

  14. Li W, Amri H, Huang H, et al. Gene and protein profiling of the response of MA-10 Leydig tumor cells to human chorionic gonadotropin. J Androl 2004; 25(6): 900–13

    PubMed  CAS  Google Scholar 

  15. Evans DRH, Macniven RP, Labanca M, et al. Purification of Fc-fusion biologic: clearance of multiple product related impurities by hydrophobic interaction chromatography. J Chromatogr A 2008; 1177: 265–71

    Article  PubMed  CAS  Google Scholar 

  16. Kelley B, Jankowski M, Booth J. An improved manufacturing process for Xyntha/Refacto AF. Haemophilia 2010; 16: 717–25

    Article  PubMed  CAS  Google Scholar 

  17. Birken S, Maydelman Y, Gawinowicz MA, et al. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology 1996; 137(4): 1402–11

    Article  PubMed  CAS  Google Scholar 

  18. Rodríguez AM, Rodríguez OZ, Conde IB, et al. Purification of human chorionic gonadotropin from pregnant urine by immunoaffinity chromatography using a monoclonal antibody anti-β chain hCG. Hybridoma 2005; 24(5): 258–62

    Article  PubMed  Google Scholar 

  19. Recombinant human FSH product development group. Recombinant follicle stimulating hormone: development of the first biotechnology product for the treatment of infertility. Hum Reprod Update 1998; 4(6): 862–81

    Article  Google Scholar 

  20. Kolbe H. Process for purifying a highly glycosylated protein. US Patent US005276141A. 1994

  21. Cameron R, Davies J, Adcock W, et al. The removal of model viruses, Poliovirus type 1 and Canine parvovirus, during the purification of human albumin using ion-exchange chromatographic procedure. Biologicals 1997; 25: 391–401

    Article  PubMed  CAS  Google Scholar 

  22. Johnston A, MacGregor A, Borovec S, et al. Inactivation and clearance of viruses during the manufacture of high purity Factor IX. Biologicals 2000; 28: 129–36

    Article  PubMed  CAS  Google Scholar 

  23. Curtis S, Lee K, Blank GS, et al. Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnol Bioeng 2003; 84(2): 179–86

    Article  PubMed  CAS  Google Scholar 

  24. Strauss DM, Gorrell J, Plancarte M, et al. Anion exchange chromatography provides a robust, predictable process to ensure viral safety of biotechnology products. Biotechnol Bioeng 2009; 102(1): 168–75

    Article  PubMed  CAS  Google Scholar 

  25. Strauss DM, Lute S, Tebaykina Z, et al. Understanding the mechanism of virus removal by Q Sepharose fast flow chromatography during the purification of CHO-cell derived biotherapeutics. Biotechnol Bioeng 2009; 104(2): 371–80

    Article  PubMed  CAS  Google Scholar 

  26. Weichert WS, Parker JSL, Wahid ATM, et al. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology 1998; 250(1): 106–17

    Article  PubMed  CAS  Google Scholar 

  27. Yuan W, Parrish CR. Canine parvovirus capsid assembly and differences in mammalian and insect cell. Virology 2001; 279(2): 546–57

    Article  PubMed  CAS  Google Scholar 

  28. Ikuta K, Luftig R. Differences in the pI heterogeneity of virion and intracellular Moloney murine leukemia virus p30s. J Gen Virol 1987; 68: 487–98

    Article  PubMed  Google Scholar 

  29. Miesegaes G, Lute S, Brorson K. Analysis of viral clearance unit operation for monoclonal antibodies. Biotechnol Bioeng 2010; 106(2): 238–46

    PubMed  CAS  Google Scholar 

  30. Zhou JX, Solamo F, Hong T, et al. Viral clearance using disposable systems in monoclonal antibody commercial downstream processing. Biotechnol Bioeng 2008; 100(3): 488–96

    Article  PubMed  CAS  Google Scholar 

  31. Billiau A, Vandekerckhove F. Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur J Clin Invest 1991; 21: 559–73

    Article  PubMed  CAS  Google Scholar 

  32. Van Leeuwen PAM, Boermeester MA, Houdijk APJ, et al. Clinical significance of translocation. Gut 1994; 35Suppl. 1: S28–34

    Article  PubMed  Google Scholar 

  33. Chen RH, Huang CJ, Newton BS, et al. Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Prot Expr Purif 2009; 64: 76–81

    Article  CAS  Google Scholar 

  34. Guse AH, Milton AD, Schulze-Koops H, et al. Purification and analytical characterization of an anti-CD4 monoclonal antibody for human therapy. J Chromatogr A 1994; 661: 13–23

    Article  PubMed  CAS  Google Scholar 

  35. Milligan JR, Catz-Biro L, Archer MC. Effect of phosphate concentration on the yield and purity of DNA separated from RNA by hydroxyapatite chromatography. J Chromatogr A 1987; 411: 481–5

    Article  CAS  Google Scholar 

  36. Knudsen HL, Fahrner RL, Xu Y, et al. Membrane ion-exchange chromatography for process-scale antibody purification. J Chromatogr A 2001; 907: 145–54

    Article  PubMed  CAS  Google Scholar 

  37. Shukla AA, Jiang C, Ma J, et al. Demonstration of robust host cell protein clearance in biopharmaceutical downstream process. Biotechnol Prog 2008; 24: 615–22

    Article  PubMed  CAS  Google Scholar 

  38. Eaton LC. Host cell contaminant protein assay development for recombinant biopharmaceuticals. J Chromatogr A 1995; 705: 105–14

    Article  PubMed  CAS  Google Scholar 

  39. Ludwig M, Doody KJ, Doody KM. Use of recombinant human chorionic gonadotropin in ovulation induction. Fertil Steril 2003; 79(5): 1051–9

    Article  PubMed  Google Scholar 

  40. Costello MF, Eden JA. A systemic review of the reproductive system effects of matformin in patients with polycystic ovary syndrome. Fertil Steril 2003; 79(1): 1–13

    Article  PubMed  Google Scholar 

  41. Frank S. Polycystic ovary syndrome. N Engl J Med 1995; 333(13): 853–61

    Article  Google Scholar 

  42. Batta SK, Rabovsky MA, Channing CP, et al. Effect of removal of carbohydrate residues upon the half life and in vivo biological activity of human chorionic gonadotropin. Adv Exp Med Biol 1979; 112: 749–56

    Article  PubMed  CAS  Google Scholar 

  43. Odink J, Brand EC, Van Hall EV. Ovarian binding and intrinsic biological activity of desialylated human chorionic gonadotrophin (ASIALO-hCG) in immature superovulated rats. Acta Endocr 1979; 90: 349–60

    PubMed  CAS  Google Scholar 

  44. Barrios-De-Tomasi J, Timossi C, Merchant H, et al. Assessment of the in vitro and in vivo biological activities of the human follicle-stimulating isohormones. Mol Cell Endocrinol 2002; 186: 189–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this original research article. The authors have no conflict of interest directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Myung Yang PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, K.S., Yoon, J.W., Na, K.H. et al. Evaluation of Process Efficiency and Bioequivalence of Biosimilar Recombinant Human Chorionic Gonadotropin (rhCG). BioDrugs 25, 115–127 (2011). https://doi.org/10.2165/11589430-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11589430-000000000-00000

Keywords

Navigation