Skip to main content
Log in

Potential Predictors of Hippocampal Atrophy in Alzheimer’s Disease

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The hippocampus is a vulnerable and plastic brain structure that is damaged by a variety of stimuli, e.g. hypoxia, hypoperfusion, hypoglycaemia, stress and seizures. Alzheimer’s disease is a common and important disorder in which hippocampal atrophy is reported. Indeed, the available evidence suggests that hippocampal atrophy is the starting point of the pathogenesis of Alzheimer’s disease and a significant number of patients with hippocampal atrophy will develop Alzheimer’s disease. Studies indicate that hippocampal atrophy has functional consequences, e.g. cognitive impairment. Deposition of tau protein, formation of neurofibrillary tangles and accumulation of β-amyloid (Aβ) contributes to hippocampal atrophy together with damage caused by several other factors. Some of the factors associated with the development of hippocampal atrophy in Alzheimer’s disease have been identified, e.g. hypertension, diabetes mellitus, hyperlipidaemia, seizures, affective disturbances and stress, and more is being learnt about other factors.

Hypertension can potentially damage the hippocampus through ischaemia caused by atherosclerosis and cerebral amyloid angiopathy. Diabetes can produce hippocampal lesions via both vascular and non-vascular pathologies and can reduce the threshold for hippocampal damage. Carriers of the apolipoprotein E (ApoE)-ɛ4 genotype have been shown to have greater mesial temporal atrophy and poorer memory functions than non-carriers. In addition to giving rise to abnormal lipid metabolism, the ApoE-ε4 allele can affect the course of Alzheimer’s disease via both Aβ-dependent and -independent pathways. Repetitive seizures can increase Aβ-peptide production and cause neurotransmission dysfunction and cytoskeletal abnormalities or a combination of these. Affective disturbances and stress are proposed to increase corticosteroid-induced hippocampal damage in many different ways.

In the absence of any specific markers for predicting Alzheimer’s disease progression, it seems appropriate to learn more about the various predictors of hippocampal atrophy that determine the progression of Alzheimer’s disease from mild cognitive impairment (MCI), and then attempt to address these. It would be interesting to know to what extent these predictors play a role in the development of MCI or hasten the conversion of MCI to fullblown Alzheimer’s disease. Finally, it would be useful to know the extent to which these predictors can worsen or aggravate existing Alzheimer’s disease.

Of the clinically used drugs in Alzheimer’s disease, anticholinesterases have been shown to slow down the rate of progression of hippocampal atrophy. One study observed that the neuroprotective effect of these agents is possibly due to an anti-Aβ effect produced by cholinergic stimulation. Similarly, antihypertensive and antihyperglycaemic drugs (pioglitazone and insulin) have been shown to reduce the risk of Alzheimer’s disease or disease progression. Currently, there are no disease-modifying therapies available for Alzheimer’s disease. It has been suggested that for treatment to be most effective, the regimen must be started before significant downstream damage has occurred (i.e. before the clinical diagnosis of Alzheimer’s disease, at the stage of MCI or earlier). Since the hippocampus is a plastic structure and atrophy of this structure is closely related to the pathophysiology of Alzheimer’s disease, if we could control blood pressure, regulate blood sugar, treat behavioural and psychological symptoms, achieve satisfactory lipid lowering and maintain a seizure-free state in patients with Alzheimer’s disease, this may not only improve disease control but could also potentially affect the rate of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111–28

    PubMed  Google Scholar 

  2. Reitz C, Brickman AM, Brown TR, et al. Linking hippocampal structure and function to memory performance in an aging population. Arch Neurol 2009 Nov; 66(11): 1385–92

    Article  PubMed  Google Scholar 

  3. O’Sullivan M, Ngo E, Viswanathan A, et al. Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiol Aging 2009 Jun; 30(6): 890–7

    Article  PubMed  Google Scholar 

  4. Dhikav V, Anand K. Hippocampal atrophy may be a predictor of seizures in Alzheimer’s disease. Med Hypotheses 2007; 69(1): 234–5

    Article  PubMed  Google Scholar 

  5. Doraiswamy PM, Steffens DC, McQuoid DR. Statin use and hippocampal volumes in elderly subjects at risk for Alzheimer’s disease: a pilot observational study. Am J Alzheimers Dis Other Dement 2004 Sep–Oct; 19(5): 275–8

    Article  Google Scholar 

  6. Hayashi T, Wada A, Uchida N, et al. Enlargement of the hippocampal angle: a new index of Alzheimer disease. Magn Reson Med Sci 2009; 8(1): 33–8

    Article  PubMed  Google Scholar 

  7. Mega MS, Small GW, Xu ML, et al. Hippocampal atrophy in persons with age-associated memory impairment: volumetry within a common space. Psychosom Med 2002 May–Jun; 64(3): 487–92

    PubMed  Google Scholar 

  8. de Toledo-Morrell L, Goncharova I, Dickerson B, et al. From healthy aging to early Alzheimer’s disease: in vivo detection of entorhinal cortex atrophy. Ann N Y Acad Sci 2000 Jun; 911: 240–53

    Article  PubMed  Google Scholar 

  9. McEwen BS. Stress and aging hippocampus. Front Neuroendocrinol 1999; 20: 49–70

    Article  PubMed  CAS  Google Scholar 

  10. Jack Jr CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999 Apr 22; 52(7): 1397–403

    Article  PubMed  Google Scholar 

  11. Rountree SD, Waring SC, Chan WC, et al. Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia. Dement Geriatr Cogn Disord 2007; 24(6): 476–82

    Article  PubMed  CAS  Google Scholar 

  12. Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003 Feb; 18(2): 525–41

    Article  PubMed  Google Scholar 

  13. Bottino CM, Castro CC, Gomes RL, et al. Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging. Int Psychogeriatr 2002 Mar; 14(1): 59–72

    Article  PubMed  Google Scholar 

  14. Yavuz BB, Ariogul S, Cankurtaran M, et al. Hippocampal atrophy correlates with the severity of cognitive decline. Int Psychogeriatr 2007 Aug; 19(4): 767–77

    Article  PubMed  Google Scholar 

  15. Allen G, Barnard H, McColl R, et al. Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 2007 Oct; 64(10): 1482–7

    Article  PubMed  Google Scholar 

  16. Stoub TR, deToledo-Morrell L, Stebbins GT, et al. Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2006 Jun 27; 103(26): 10041–5

    Article  PubMed  CAS  Google Scholar 

  17. deToledo-Morrell L, Stoub TR, Wang C. Hippocampal atrophy and disconnection in incipient and mild Alzheimer’s disease. Prog Brain Res 2007; 163: 741–53

    Article  PubMed  Google Scholar 

  18. van de Pol LA, van der Flier WM, Korf ES, et al. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 2007 Oct 9; 69(15): 1491–7

    Article  PubMed  Google Scholar 

  19. Henneman WJ, Sluimer JD, Barnes J, et al. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 2009 Mar 17; 72(11): 999–1007

    Article  PubMed  CAS  Google Scholar 

  20. Maestú F, Arrazola J, Fernández A, et al. Do cognitive patterns of brain magnetic activity correlate with hippocampal atrophy in Alzheimer’s disease? J Neurol Neurosurg Psychiatry 2003 Feb; 74(2): 208–12

    Article  PubMed  Google Scholar 

  21. Fjell AM, Amlien IK, Westlye LT, et al. Mini-mental state examination is sensitive to brain atrophy in Alzheimer’s disease. Dement Geriatr Cogn Disord 2009; 28(3): 252–8

    Article  PubMed  CAS  Google Scholar 

  22. Petersen RC. Early diagnosis of Alzheimer’s disease: is MCI too late? Curr Alzheimer Res 2009 Aug; 6(4): 324–30

    Article  PubMed  CAS  Google Scholar 

  23. Celsis P. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer’s disease? Ann Med 2000 Feb; 32(1): 6–14

    Article  PubMed  CAS  Google Scholar 

  24. den Heijer T, Launer LJ, Prins ND, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology 2005 Jan 25; 64(2): 263–7

    Article  Google Scholar 

  25. Obisesan TO. Hypertension and cognitive function. Clin Geriatr Med 2009 May; 25(2): 259–88

    Article  PubMed  Google Scholar 

  26. Korf ES, Scheltens P, Barkhof F, et al. Blood pressure, white matter lesions and medial temporal lobe atrophy: closing the gap between vascular pathology and Alzheimer’s disease? Dement Geriatr Cogn Disord 2005; 20(6): 331–7

    Article  PubMed  Google Scholar 

  27. Etgen T, Brönner M, Sander D, et al. Somatic factors in cognitive impairment. Fortschr Neurol Psychiatr 2009 Feb; 77(2): 72–82

    Article  PubMed  CAS  Google Scholar 

  28. Dai W, Lopez OL, Carmichael OT, et al. Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke 2008 Feb; 39(2): 349–54

    Article  PubMed  Google Scholar 

  29. Dhikav V, Verma M, Anand K. Is hypertension a predictor of hippocampal atrophy in Alzheimer’s disease? Int Psychogeriatr 2009 Aug; 21(4): 795–6

    Article  PubMed  Google Scholar 

  30. Skoog I, Gustafson D. Update on hypertension and Alzheimer’s disease. Neurol Res 2006 Sep; 28(6): 605–11

    Article  PubMed  Google Scholar 

  31. Korf ES, White LR, Scheltens P, et al. Midlife blood pressure and the risk of hippocampal atrophy: the Honolulu Asia Aging Study. Hypertension 2004 Jul; 44(1): 29–34

    Article  PubMed  CAS  Google Scholar 

  32. Skoog I, Gustafson D. Hypertension, hypertensionclustering factors and Alzheimer’s disease. Neurol Res 2003 Sep; 25(6): 675–80

    Article  PubMed  Google Scholar 

  33. Skoog I. Vascular aspects in Alzheimer’s disease. J Neural Transm Suppl 2000; 59: 37–43

    PubMed  CAS  Google Scholar 

  34. De Leeuw FE, Barkhof F, Scheltens P. Alzheimer’s disease: one clinical syndrome, two radiological expressions — a study on blood pressure. J Neurol Neurosurg Psychiatry 2004 Sep; 75(9): 1270–4

    Article  PubMed  Google Scholar 

  35. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol 2009 Oct; 66(10): 1210–5

    Article  PubMed  Google Scholar 

  36. Korf ES, van Straaten EC, de Leeuw FE, et al. Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med 2007 Feb; 24(2): 166–71

    Article  PubMed  CAS  Google Scholar 

  37. Fournier A, Oprisiu-Fournier R, Serot JM, et al. Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 2009 Sep; 9(9): 1413–31

    Article  PubMed  CAS  Google Scholar 

  38. de Leeuw FE, Barkhof F, Scheltens P. Progression of cerebral white matter lesions in Alzheimer’s disease: a new window for therapy? J Neurol Neurosurg Psychiatry 2005 Sep; 76(9): 1286–8

    Article  PubMed  Google Scholar 

  39. Aszalós Z. Cerebral complications of diabetes mellitus. Orv Hetil 2007 Dec 16; 148(50): 2371–6

    Article  PubMed  Google Scholar 

  40. de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008 Nov; 2(6): 1101–13

    PubMed  Google Scholar 

  41. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 2006 Feb; 27(2): 190–8

    Article  PubMed  CAS  Google Scholar 

  42. Helzner EP, Luchsinger JA, Scarmeas N, et al. Contribution of vascular risk factors to the progression in Alzheimer disease. Arch Neurol 2009 Mar; 66(3): 343–8

    Article  PubMed  Google Scholar 

  43. de la Monte SM, Wands JR. Review of insulin and insulinlike growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005 Feb; 7(1): 45–61

    PubMed  Google Scholar 

  44. Profenno LA, Faraone SV. Diabetes and overweight associate with non-APOE4 genotype in an Alzheimer’s disease population. Am J Med Genet B Neuropsychiatr Genet 2008 Sep 5; 147B(6): 822–9

    Article  PubMed  Google Scholar 

  45. Burns JM, Donnelly JE, Anderson HS, et al. Peripheral insulin and brain structure in early Alzheimer disease. Neurology 2007 Sep 11; 69(11): 1094–104

    Article  PubMed  CAS  Google Scholar 

  46. den Heijer T, Vermeer SE, van Dijk EJ, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 2003 Dec; 46(12): 1604–10

    Article  Google Scholar 

  47. Beeri MS, Silverman JM, Davis KL, et al. Type 2 diabetes is negatively associated with Alzheimer’s disease neuropathology. J Gerontol A Biol Sci Med Sci 2005 Apr; 60(4): 471–5

    Article  PubMed  Google Scholar 

  48. Sjögren M, Blennow K. The link between cholesterol and Alzheimer’s disease. World J Biol Psychiatry 2005; 6(2): 85–97

    Article  PubMed  Google Scholar 

  49. Wolf H, Hensel A, Arendt T, et al. Serum lipids and hippocampal volume: the link to Alzheimer’s disease? Ann Neurol 2004 Nov; 56(5): 745–8

    Article  PubMed  CAS  Google Scholar 

  50. Xiong H, Callaghan D, Jones A, et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 2008 Mar; 29(3): 422–37

    Article  PubMed  CAS  Google Scholar 

  51. Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J Intern Med 2006 Sep; 260(3): 211–23

    Article  PubMed  CAS  Google Scholar 

  52. Mori E, Lee K, Yasuda M, et al. Accelerated hippocampal atrophy in Alzheimer’s disease with apolipoprotein E epsilon4 allele. Ann Neurol 2002 Feb; 51(2): 209–14

    Article  PubMed  CAS  Google Scholar 

  53. Stozická Z, Zilka N, Novák M. Risk and protective factors for sporadic Alzheimer’s disease. Acta Virol 2007; 51(4): 205–22

    PubMed  Google Scholar 

  54. Wolk DA, Dickerson BC, Alzheimer’s Disease Neuroimaging Initiative. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci U S A 2010 Jun 1; 107(22): 10256–61

    Article  PubMed  CAS  Google Scholar 

  55. Sasaki M, Kodama C, Hidaka S, et al. Prevalence of four subtypes of mild cognitive impairment and APOE in a Japanese community. Int J Geriatr Psychiatry 2009 Oct; 24(10): 1119–26

    Article  PubMed  Google Scholar 

  56. Wolozin B, Bednar MM. Interventions for heart disease and their effects on Alzheimer’s disease. Neurol Res 2006 Sep; 28(6): 630–6

    Article  PubMed  CAS  Google Scholar 

  57. Caballero J, Nahata M. Do statins slow down Alzheimer’s disease? A review. J Clin Pharm Ther 2004 Jun; 29(3): 209–13

    Article  PubMed  CAS  Google Scholar 

  58. Whitfield JF. Can statins put the brakes on Alzheimer’s disease? Expert Opin Investig Drugs 2006 Dec; 15(12): 1479–85

    Article  PubMed  CAS  Google Scholar 

  59. Mendez MF, Catanzaro P, Doss RC, et al. Seizures in Alzheimer’s disease: clinicopathologic study. J Geriatr Psychiatry Neurol 1994 Oct–Dec; 7(4): 230–3

    PubMed  CAS  Google Scholar 

  60. Scarmeas N, Honig LS, Choi H, et al. Seizures in Alzheimer disease: who, when, and how common? Arch Neurol 2009 Aug; 66(8): 992–7

    Article  PubMed  Google Scholar 

  61. Amatniek JC, Hauser WA, DelCastillo-Castaneda C, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 2006 May; 47(5): 867–72

    Article  PubMed  Google Scholar 

  62. Pearlson GD, Harris GJ, Powers RE, et al. Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 1992 May; 49(5): 402–8

    Article  PubMed  CAS  Google Scholar 

  63. Sheline YI, Wang PW, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 1996 Apr 30; 93(9): 3908–13

    Article  PubMed  CAS  Google Scholar 

  64. Larner AJ. Epileptic Seizures in AD Patients. Neuromolecular Med 2010; 12(1): 71–7

    Article  PubMed  CAS  Google Scholar 

  65. Sousa N, Almeida OF. Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 2002; 13(1): 59–84

    PubMed  CAS  Google Scholar 

  66. Sousa N, Cerqueira JJ, Almeida OF. Corticosteroid receptors and neuroplasticity. Brain Res Rev 2008 Mar; 57(2): 561–70

    Article  PubMed  CAS  Google Scholar 

  67. Huang CW, Lui CC, Chang WN, et al. Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J Clin Neurosci 2009 Oct; 16(10): 1283–6

    Article  PubMed  CAS  Google Scholar 

  68. Sheline YI. Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol Psychiatry 1996 Sep; 1(4): 298–9

    PubMed  CAS  Google Scholar 

  69. Luo L, Tan RX. Fluoxetine inhibits dendrite atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model. Acta Pharmacol Sin 2001 Oct; 22(10): 865–70

    PubMed  CAS  Google Scholar 

  70. Bierman EJ, Comijs HC, Jonker C, et al. The effect of anxiety and depression on decline of memory function in Alzheimer’s disease. Int Psychogeriatr 2009 Dec; 21(6): 1142–7

    Article  PubMed  CAS  Google Scholar 

  71. Panza F, D’Introno A, Colacicco AM, et al. Temporal relationship between depressive symptoms and cognitive impairment: the Italian Longitudinal Study on Aging. J Alzheimers Dis 2009; 17(4): 899–911

    PubMed  Google Scholar 

  72. Dhikav V, Anand KS. Glucocorticoids may initiate Alzheimer’s disease: a potential therapeutic role for mifepristone (RU-486). Med Hypotheses 2007; 68(5): 1088–92

    Article  PubMed  CAS  Google Scholar 

  73. Cendes F. Progressive hippocampal and extrahippocampal atrophy in drug resistant epilepsy. Curr Opin Neurol 2005 Apr; 18(2): 173–7

    Article  PubMed  Google Scholar 

  74. Sapolsky RM, Uno H, Rebert CS, et al. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990 Sep; 10(9): 2897–902

    PubMed  CAS  Google Scholar 

  75. Sapolsky RM. Potential behavioral modification of glucocorticoid damage to the hippocampus. Behav Brain Res 1993 Nov 30; 57(2): 175–82

    Article  PubMed  CAS  Google Scholar 

  76. Lupien SJ, de Leon M, de Santi S, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998 May; 1(1): 69–73

    Article  PubMed  CAS  Google Scholar 

  77. Hyman BT, Van Hoesen GW, Damasio AR, et al. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984 Sep 14; 225(4667): 1168–70

    Article  PubMed  CAS  Google Scholar 

  78. De Lacoste MC, White 3rd CL. The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiol Aging 1993; 14(1): 1–16

    Article  PubMed  Google Scholar 

  79. Welsh KA, Butters N, Hughes JP, et al. Detection and staging of dementia in Alzheimer’s disease: use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch Neurol 1992 May; 49(5): 448–52

    Article  PubMed  CAS  Google Scholar 

  80. Fox NC, Freeborough PA, Rossor MN. Visualisation and quantification of rates of atrophy in Alzheimer’s disease. Lancet 1996 Jul 13; 348(9020): 94–7

    Article  PubMed  CAS  Google Scholar 

  81. Schott JM, Fox NC, Frost C, et al. Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 2003 Feb; 53(2): 181–8

    Article  PubMed  Google Scholar 

  82. Jack Jr CR, Shiung MM, Gunter JL, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004 Feb 24; 62(4): 591–600

    Article  PubMed  Google Scholar 

  83. Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer’s disease. Nat Med 2004; 10: S34–41 doi: 10.1038/nrn1433

    Article  PubMed  Google Scholar 

  84. De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001 Jul–Aug; 22(4): 529–39

    Article  PubMed  Google Scholar 

  85. Bourgeat P, Chételat G, Villemagne VL, et al., AIBL Research Group. Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology 2010 Jan 12; 74(2): 121–7

    Article  PubMed  CAS  Google Scholar 

  86. Michaelis ML. Drugs targeting Alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther 2003 Mar; 304(3): 897–904

    Article  PubMed  CAS  Google Scholar 

  87. Hashimoto M, Kazui H, Matsumoto K, et al. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry 2005 Apr; 162(4): 676–82

    Article  PubMed  Google Scholar 

  88. Kamiyama K, Wada A, Sugihara M, et al. Potential hippocampal region atrophy in diabetes mellitus type 2: a voxel-based morphometry VSRAD study. Jpn J Radiol 2010 May; 28(4): 266–72

    Article  PubMed  Google Scholar 

  89. Rasgon NL, Kenna HA, Wroolie TE, et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging. Epub 2009 Dec 24; doi:10.1016/j.neurobiolaging.2009.12.005

    Google Scholar 

  90. Sato T, Hanyu H, Hirao K, et al. Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. Epub 2009 Nov 16; doi:10.1016/j.neurobiolaging. 2009.10.009

    Google Scholar 

  91. Plastino M, Fava A, Pirritano D, et al. Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and diabetes mellitus type-2. J Neurol Sci 2010 Jan 15; 288(1–2): 112–6

    Article  PubMed  CAS  Google Scholar 

  92. Deschaintre Y, Richard F, Leys D, et al. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology 2009 Sep 1; 73(9): 674–80

    Article  PubMed  Google Scholar 

  93. Fox NC, Crum WR, Scahill RI, et al. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001 Jul 21; 358(9277): 201–5

    Article  PubMed  CAS  Google Scholar 

  94. Ringman JM, Medina LD, Rodriguez-Agudelo Y, et al. Current concepts of mild cognitive impairment and their applicability to persons at-risk for familial Alzheimer’s disease. Curr Alzheimer Res 2009 Aug; 6(4): 341–6

    Article  PubMed  CAS  Google Scholar 

  95. Risacher SL, Saykin AJ, West JD, et al., Alzheimer’s Disease Neuroimaging Initiative (ADNI). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 2009 Aug; 6(4): 347–61

    Article  PubMed  CAS  Google Scholar 

  96. Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006 Oct 19; 443(7113): 768–73

    Article  PubMed  CAS  Google Scholar 

  97. Dhikav V, Anand KS. Is hippocampal atrophy a future drug target? Med Hypotheses 2007; 68(6): 1300–6

    Article  PubMed  CAS  Google Scholar 

  98. Rountree SD, Chan W, Pavlik VN, et al. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease [abstract]. Alzheimers Res Ther 2009 Oct 21; 1(2): 7

    Article  PubMed  CAS  Google Scholar 

  99. Lynch G. Memory enhancement: the search for mechanism-based drugs. Nat Neurosci 2002 Nov; 5 Suppl.: 1035–8

    Article  PubMed  CAS  Google Scholar 

  100. Frisoni GB, Fox NC, Jack Jr CR, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010 Feb; 6(2): 67–77

    Article  PubMed  Google Scholar 

  101. Ferreira LK, Diniz BS, Forlenza OV, et al. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. Epub 2010; doi:10.1016/j.neurobiolaging.2009.11.008

    Google Scholar 

  102. DeCarolis NA, Eisch AJ. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010 May; 58(6): 884–93

    Article  PubMed  CAS  Google Scholar 

  103. Sluimer JD, van der Flier WM, Karas GB, et al. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer’s disease. Eur Radiol 2009 Dec; 19(12): 2826–33

    Article  PubMed  Google Scholar 

  104. Wang PN, Liu HC, Lirng JF, et al. Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment. Psychiatry Res 2009 Mar 31; 171(3): 221–31

    Article  PubMed  Google Scholar 

  105. Valenzuela MJ, Sachdev P, Wen W, et al. Lifespan mental activity predicts diminished rate of hippocampal atrophy [abstract]. PLoS One 2008 Jul 9; 3(7): e2598

    Article  PubMed  CAS  Google Scholar 

  106. Honea RA, Thomas GP, Harsha A, et al. Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis Assoc Disord 2009 Jul–Sep; 23(3): 188–97

    Article  PubMed  Google Scholar 

  107. Redila VA, Olson AK, Swann SE, et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 2006; 16(3): 305–11

    Article  PubMed  CAS  Google Scholar 

  108. Hüll M, Berger M, Heneka M. Disease-modifying therapies in Alzheimer’s disease: how far have we come? Drugs 2006; 66(16): 2075–93

    Article  PubMed  Google Scholar 

  109. Busse A, Angermeyer MC, Riedel-Heller SG. Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br J Psychiatry 2006 Nov; 189: 399–404

    Article  PubMed  Google Scholar 

  110. Miller DB, O’Callaghan JP. Aging, stress and the hippocampus. Ageing Res Rev 2005 May; 4(2): 123–40

    Article  PubMed  CAS  Google Scholar 

  111. Peters R. Ageing and the brain. Postgrad Med J 2006 Feb; 82(964): 84–8

    Article  PubMed  CAS  Google Scholar 

  112. Neugroschl J, Sano M. An update on treatment and prevention strategies for Alzheimer’s disease. Curr Neurol Neurosci Rep 2009 Sep; 9(5): 368–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Dhikav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhikav, V., Anand, K. Potential Predictors of Hippocampal Atrophy in Alzheimer’s Disease. Drugs Aging 28, 1–11 (2011). https://doi.org/10.2165/11586390-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11586390-000000000-00000

Keywords

Navigation