Skip to main content
Log in

Treatment of Viral Conjunctivitis with Antiviral Drugs

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Viral conjunctivitis is one of the most common disorders observed in ophthalmic emergency departments, yet no established treatment exists. Lately, antiviral medications have been introduced into clinical practice; however, a systematic review focusing on their use and effectiveness in the treatment of viral conjunctivitis has not been previously reported. We systemically reviewed the literature to identify studies where antiviral drugs were used to treat viral conjunctivitis. Currently, aciclovir, trifluridine and valaciclovir are commonly used as antiviral agents to treat herpesvirus infections. Cidofovir has been used successfully to treat some cases of adenoviral conjunctivitis, although toxicity has also been reported. The use of other medications, such as idoxuridine, has been minimized in clinical practice due to their high toxicity. Interestingly, most of the antiviral drugs developed are used to treat herpesvirus infections, while less progress has been made in the field of adenoviral infections. For other viral causes of conjunctivitis, no effective remedy is currently available, and treatment focuses on the relief of symptoms. Caution should be exercised when coadministering other pharmacological agents, such as corticosteroids, because of emerging adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Cronau H, Kankanala RR, Mauger T. Diagnosis and management of red eye in primary care. Am Fam Physician 2010 Jan 15; 81(2): 137–44

    PubMed  Google Scholar 

  2. Kumar NL, Black D, McClellan K. Daytime presentations to a metropolitan ophthalmic emergency department. Clin Experiment Ophthalmol 2005 Dec; 33(6): 586–92

    Article  PubMed  Google Scholar 

  3. Weber CM, Eichenbaum JW. Acute red eye: differentiating viral conjunctivitis from other, less common causes. Postgrad Med 1997 May; 101(5): 185–6, 9–92, 95–6

    PubMed  CAS  Google Scholar 

  4. Chu PY, Ke GM, Chang CH, et al. Molecular epidemiology of coxsackie A type 24 variant in Taiwan, 2000–2007. J Clin Virol 2009 Aug; 45(4): 285–91

    Article  PubMed  CAS  Google Scholar 

  5. Khan A, Sharif S, Shaukat S, et al. An outbreak of acute hemorrhagic conjunctivitis (AHC) caused by coxsackievirus A24 variant in Pakistan. Virus Res 2008 Oct; 137(1): 150–2

    Article  PubMed  CAS  Google Scholar 

  6. Madhavan HN, Malathy J, Priya K. An outbreak of acute conjunctivitis caused by Coxsackie virus A 24 [letter]. Indian J Ophthalmol 2000 Jun; 48(2): 159

    PubMed  CAS  Google Scholar 

  7. Uchio E, Yamazaki K, Ishikawa H, et al. An epidemic of acute haemorrhagic conjunctivitis caused by enterovirus 70 in Okinawa, Japan, in 1994. Graefes Arch Clin Exp Ophthalmol 1999 Jul; 237(7): 568–72

    Article  PubMed  CAS  Google Scholar 

  8. Tan DS, Yin-Murphy M, Kandiah S. An outbreak of acute conjunctivitis caused by coxsackievirus A24 in Kuala-Lumpur, Malaysia, 1978. Southeast Asian J Trop Med Public Health 1980 Mar; 11(1): 24–7

    PubMed  CAS  Google Scholar 

  9. Gottsch JD. Surveillance and control of epidemic keratoconjunctivitis. Trans Am Ophthalmol Soc 1996; 94: 539–87

    PubMed  CAS  Google Scholar 

  10. Hamada N, Gotoh K, Hara K, et al. Nosocomial outbreak of epidemic keratoconjunctivitis accompanying environmental contamination with adenoviruses. J Hosp Infect 2008 Mar; 68(3): 262–8

    Article  PubMed  CAS  Google Scholar 

  11. Kaneko H, Maruko I, Iida T, etal. The possibility of human adenovirus detection from the conjunctiva in asymptomatic cases during nosocomial infection. Cornea 2008 Jun; 27(5): 527–30

    Article  PubMed  Google Scholar 

  12. Levandowski RA, Rubenis M. Nosocomial conjunctivitis caused by adenovirus type 4. J Infect Dis 1981 Jan; 143(1): 28–31

    Article  PubMed  CAS  Google Scholar 

  13. De Clercq E, Neyts J. Antiviral agents acting as DNA or RNA chain terminators. Handb Exp Pharmacol 2009; (189): 53–84

  14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009 Jul 21; 6 (7): e1000097

  15. Cobo LM, Foulks GN, Liesegang T, et al. Oral acyclovir in the treatment of acute herpes zoster ophthalmicus. Ophthalmology 1986 Jun; 93(6): 763–70

    PubMed  CAS  Google Scholar 

  16. Uchoa UB, Rezende RA, Carrasco MA, et al. Long-term acyclovir use to prevent recurrent ocular herpes simplex virus infection. Arch Ophthalmol 2003 Dec; 121(12): 1702–4

    Article  PubMed  CAS  Google Scholar 

  17. Neoh C, Harding SP, Saunders D, et al. Comparison of topical and oral acyclovir in early herpes zoster ophthalmicus. Eye (Lond) 1994; 8 (Pt 6): 688–91

    Article  Google Scholar 

  18. Goon P, Wright M, Fink C. Ophthalmic zoster sine herpete. J R Soc Med 2000 Apr; 93(4): 191–2

    PubMed  CAS  Google Scholar 

  19. Parentin F, Molin GD, D’Agaro P, et al. Parinaud’s oculoglandular syndrome due to herpes simplex virus type 1. Ocul Immunol Inflamm 2007 Mar–Apr; 15(2): 139–41

    Article  PubMed  Google Scholar 

  20. Gajdatsy AD, Kosmin A, Barrett GD. Coexistent adenoviral keratoconjunctivitis and Acanthamoeba keratitis. Clin Experiment Ophthalmol 2000 Dec; 28(6): 434–6

    Article  PubMed  CAS  Google Scholar 

  21. Gordon YJ, Naesens L, DeClercq E, et al. Treatment of adenoviral conjunctivitis with topical cidofovir [letter]. Cornea 1996 Sep; 15(5): 546

    Article  PubMed  CAS  Google Scholar 

  22. Castleton A, Kottaridis PD. A case of ‘red eye’ post allogeneic stem cell transplantation. Bone Marrow Transplant 2007 Feb; 39(4): 241–2

    Article  PubMed  CAS  Google Scholar 

  23. Hillenkamp J, Reinhard T, Ross RS, et al. Topical treatment of acute adenoviral keratoconjunctivitis with 0.2% cidofovir and 1 % cyclosporine: a controlled clinical pilot study. Arch Ophthalmol 2001 Oct; 119(10): 1487–91

    Article  PubMed  CAS  Google Scholar 

  24. Hillenkamp J, Reinhard T, Ross RS, et al. The effects of cidofovir 1% with and without cyclosporin A 1% as a topical treatment of acute adenoviral keratoconjunctivitis: a controlled clinical pilot study. Ophthalmology 2002 May; 109(5): 845–50

    Article  PubMed  Google Scholar 

  25. Tyring S, Engst R, Corriveau C, et al. Famciclovir for ophthalmic zoster: a randomised aciclovir controlled study. Br J Ophthalmol 2001 May; 85(5): 576–81

    Article  PubMed  CAS  Google Scholar 

  26. Dudgeon J, Bhargava SK, Ross CA. Treatment of adenovirus infection of the eye with 5-iodo-2′-deoxyuridine: a double-blind trial. Br J Ophthalmol 1969 Aug; 53(8): 530–3

    Article  PubMed  CAS  Google Scholar 

  27. Adams Jr CP, Cohen EJ, Albrecht J, et al. Interferon treatment of adenoviral conjunctivitis. Am J Ophthalmol 1984 Oct 15; 98(4): 429–32

    Article  PubMed  Google Scholar 

  28. Romano A, Revel M, Guarari-Rotman D, et al. Use of human fibroblast-derived (beta) interferon in the treatment of epidemic adenovirus keratoconjunctivitis. J Interferon Res 1980 Fall; 1(1): 95–100

    Article  PubMed  CAS  Google Scholar 

  29. Wilhelmus KR, Dunkel EC, Herson J. Topical human fibroblast interferon for acute adenoviral conjunctivitis. Graefes Arch Clin Exp Ophthalmol 1987; 225(6): 461–4

    Article  PubMed  CAS  Google Scholar 

  30. Hutter H. Epidemic keratoconjunctivitis: treatment results during an epidemic. Klin Monatsbl Augenheilkd 1990 Sep; 197(3): 214–7

    Article  PubMed  CAS  Google Scholar 

  31. Rossa V, Sundmacher R. Local prevention with interferon of ‘epidemic’ conjunctivitis caused by a currently unidentifiable virus. Klin Monatsbl Augenheilkd 1991 Sep; 199(3): 192–4

    Article  PubMed  CAS  Google Scholar 

  32. Romano A, Sadan Y. Ten years of experience with human fibroblast interferon in treatment of viral ophthalmic infections. Metab Pediatr Syst Ophthalmol 1988; 11(1–2): 43–6

    PubMed  CAS  Google Scholar 

  33. Ward JB, Siojo LG, Waller SG. A prospective, masked clinical trial of trifluridine, dexamethasone, and artificial tears in the treatment of epidemic keratoconjunctivitis. Cornea 1993 May; 12(3): 216–21

    Article  PubMed  CAS  Google Scholar 

  34. Colin J, Chastel C. Early treatment of ocular herpes simplex: apropos of 6 cases of herpetic conjunctivitis. J Fr Ophtalmol 1985; 8(12): 801–2

    PubMed  CAS  Google Scholar 

  35. Hu G, Wang MJ, Miller MJ, et al. Ocular vaccinia following exposure to a smallpox vaccinee. Am J Ophthalmol 2004 Mar; 137(3): 554–6

    Article  PubMed  Google Scholar 

  36. Fillmore GL, Ward TP, Bower KS, et al. Ocular complications in the Department of Defense Smallpox Vaccination Program. Ophthalmology 2004 Nov; 111(11): 2086–93

    Article  PubMed  Google Scholar 

  37. Wander AH. Herpes simplex and recurrent corneal disease. Int Ophthalmol Clin 1984 Summer; 24(2): 27–38

    PubMed  CAS  Google Scholar 

  38. Zaal MJ, Volker-Dieben HJ, Wienesen M, et al. Longitudinal analysis of varicella-zoster virus DNA on the ocular surface associated with herpes zoster ophthalmicus. Am J Ophthalmol 2001 Jan; 131(1): 25–9

    Article  PubMed  CAS  Google Scholar 

  39. Colin J, Prisant O, Cochener B, et al. Comparison of the efficacy and safety of valaciclovir and acyclovir for the treatment of herpes zoster ophthalmicus. Ophthalmology 2000 Aug; 107(8): 1507–11

    Article  PubMed  CAS  Google Scholar 

  40. Teuchner B, Nagl M, Schidlbauer A, et al. Tolerability and efficacy of N-chlorotaurine in epidemic keratoconjunctivitis: a double-blind, randomized, phase-2 clinical trial. J Ocul Pharmacol Ther 2005 Apr; 21(2): 157–65

    Article  PubMed  CAS  Google Scholar 

  41. Pelletier JS, Stewart K, Trattler W, et al. A combination povidone-iodine 0.4%/dexamethasone 0.1% ophthalmic suspension in the treatment of adenoviral conjunctivitis. Adv Ther 2009 Aug; 26(8): 776–83

    Article  PubMed  CAS  Google Scholar 

  42. Trousdale MD, Nesburn AB. Evaluation of the antiherpetic activity of acyclovir in rabbits. Am J Med 1982 Jul 20; 73(1A): 155–60

    Article  PubMed  CAS  Google Scholar 

  43. Romanowski EG, Yates KA, Gordon YJ. Antiviral prophylaxis with twice daily topical cidofovir protects against challenge in the adenovirus type 5/New Zealand rabbit ocular model. Antiviral Res 2001 Dec; 52(3): 275–80

    Article  PubMed  CAS  Google Scholar 

  44. Gordon YJ, Romanowski EG, Araullo-Cruz T. Topical HPMPC inhibits adenovirus type 5 in the New Zealand rabbit ocular replication model. Invest Ophthalmol Vis Sci 1994 Nov; 35(12): 4135–43

    PubMed  CAS  Google Scholar 

  45. Romanowski EG, Araullo-Cruz T, Gordon YJ. Topical corticosteroids reverse the antiviral effect of topical cidofovir in the Ad5-inoculated New Zealand rabbit ocular model. Invest Ophthalmol Vis Sci 1997 Jan; 38(1): 253–7

    PubMed  CAS  Google Scholar 

  46. Romanowski EG, Gordon YJ, Araullo-Cruz T, et al. The antiviral resistance and replication of cidofovir-resistant adenovirus variants in the New Zealand White rabbit ocular model. Invest Ophthalmol Vis Sci 2001 Jul; 42(8): 1812–5

    PubMed  CAS  Google Scholar 

  47. Kaneko H, Mori S, Suzuki O, et al. The cotton rat model for adenovirus ocular infection: antiviral activity of cidofovir. Antiviral Res 2004 Jan; 61(1): 63–6

    Article  PubMed  CAS  Google Scholar 

  48. Fontenelle JP, Powell CC, Veir JK, et al. Effect of topical ophthalmic application of cidofovir on experimentally induced primary ocular feline herpesvirus-1 infection in cats. Am J Vet Res 2008 Feb; 69(2): 289–93

    Article  PubMed  CAS  Google Scholar 

  49. Inoue H, Sonoda KH, Ishikawa M, et al. Clinical evaluation of local ocular toxicity in candidate anti-adenoviral agents in vivo. Ophthalmologica 2009; 223(4): 233–8

    Article  PubMed  CAS  Google Scholar 

  50. Malik R, Lessels NS, Webb S, et al. Treatment of feline herpesvirus-1 associated disease in cats with famciclovir and related drugs. J Feline Med Surg 2009 Jan; 11(1): 40–8

    Article  PubMed  Google Scholar 

  51. Tokumaru T. The mode of inhibition of herpes simplex and vesicular stomatitis ocular viral infections in the rabbit and hamster by an interferon inducer tilorone dihydrochloride. Res Commun Chem Pathol Pharmacol 1975 Jun; 11(2): 289–301

    PubMed  CAS  Google Scholar 

  52. Bitko V, Musiyenko A, Barik S. Viral infection of the lungs through the eye. J Virol 2007 Jan; 81(2): 783–90

    Article  PubMed  CAS  Google Scholar 

  53. Stiles J. Treatment of cats with ocular disease attributable to herpesvirus infection: 17 cases (1983–1993). J Am Vet Med Assoc 1995 Sep 1; 207(5): 599–603

    PubMed  CAS  Google Scholar 

  54. Mohanty SB, Rockemann DD, Tripathy RN. Chemotherapeutic value of 2-deoxy-D-glucose in infectious bovine rhinotracheitis viral infection in calves. Am J Vet Res 1980 Jul; 41(7): 1049–51

    PubMed  CAS  Google Scholar 

  55. Brandt CR, Spencer B, Imesch P, et al. Evaluation of a peptidomimetic ribonucleotide reductase inhibitor with a murine model of herpes simplex virus type 1 ocular disease. Antimicrob Agents Chemother 1996 May; 40(5): 1078–84

    PubMed  CAS  Google Scholar 

  56. Epstein SP, Pashinsky YY, Gershon D, et al. Efficacy of topical cobalt chelate CTC-96 against adenovirus in a cell culture model and against adenovirus keratoconjunctivitis in a rabbit model. BMC Ophthalmol 2006; 6: 22

    Article  PubMed  Google Scholar 

  57. Trousdale MD, Goldschmidt PL, Nobrega R. Activity of ganciclovir against human adenovirus type-5 infection in cell culture and cotton rat eyes. Cornea 1994 Sep; 13(5): 435–9

    Article  PubMed  CAS  Google Scholar 

  58. Romanowski EG, Yates KA, Gordon YJ. The in vitro and in vivo evaluation of ddC as a topical antiviral for ocular adenovirus infections. Invest Ophthalmol Vis Sci 2009 Nov; 50(11): 5295–9

    Article  PubMed  Google Scholar 

  59. Gordon YJ, Romanowski E, Araullo-Cruz T, et al. Inhibitory effect of (S)-HPMPC, (S)-HPMPA, and 2′-nor-cyclic GMP on clinical ocular adenoviral isolates is serotype-dependent in vitro. Antiviral Res 1991 Jul; 16(1): 11–6

    Article  PubMed  CAS  Google Scholar 

  60. Langford MP, Kadi RM, Ganley JP, et al. Inhibition of epidemic isolates of coxsackievirus type A 24 by recombinant and natural interferon alpha and interferon beta. Intervirology 1988; 29(6): 320–7

    PubMed  CAS  Google Scholar 

  61. Langford MP, Orillac R, Chen D, et al. Systemic and ocular antibody responses to inactivated acute hemorrhagic conjunctivitis (AHC) virus; enterovirus 70 (EV70). Ocul Immunol Inflamm 2003 Sep; 11(3): 197–209

    Article  PubMed  CAS  Google Scholar 

  62. Langford MP, Villarreal AL, Stanton GJ. Antibody and interferon act synergistically to inhibit enterovirus, adenovirus, and herpes simplex virus infection. Infect Immun 1983 Jul; 41(1): 214–8

    PubMed  CAS  Google Scholar 

  63. Jun EJ, Nam YR, Ahn J, et al. Antiviral potency of a siRNA targeting a conserved region of coxsackievirus A 24. Biochem Biophys Res Commun 2008 Nov 14; 376(2): 389–94

    Article  PubMed  CAS  Google Scholar 

  64. Jun EJ, Won MA, Ahn J, et al. An antiviral small-interfering RNA simultaneously effective against the most prevalent enteroviruses causing acute hemorrhagic conjunctivitis. Invest Ophthalmol Vis Sci 2011; 52(1): 58–63

    Article  PubMed  CAS  Google Scholar 

  65. Tan EL, Marcus KF, Poh CL. Development of RNA interference (RNAi) as potential antiviral strategy against enterovirus 70. J Med Virol 2008 Jun; 80(6): 1025–32

    Article  PubMed  CAS  Google Scholar 

  66. Monnerat N, Bossart W, Thiel MA. Povidone-iodine for treatment of adenoviral conjunctivitis: an in vitro study. Klin Monatsbl Augenheilkd 2006 May; 223(5): 349–52

    Article  PubMed  CAS  Google Scholar 

  67. Uchio E, Fuchigami A, Kadonosono K, et al. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 2007 Sep; 245(9): 1319–25

    Article  PubMed  CAS  Google Scholar 

  68. Langford MP, Carr DJ, Yin-Murphy M. Activity of arildone with or without interferon against acute hemorrhagic conjunctivitis viruses in cell culture. Antimicrob Agents Chemother 1985 Oct; 28(4): 578–80

    Article  PubMed  CAS  Google Scholar 

  69. Langford MP, Ball WA, Ganley JP. Inhibition of the enteroviruses that cause acute hemorrhagic conjunctivitis (AHC) by benzimidazoles; enviroxime (LY 122772) and enviradone (LY 127123). Antiviral Res 1995 Aug; 27(4): 355–65

    Article  PubMed  CAS  Google Scholar 

  70. Johansson SM, Nilsson EC, Elofsson M, et al. Multivalent sialic acid conjugates inhibit adenovirus type 37 from binding to and infecting human corneal epithelial cells. Antiviral Res 2007 Feb; 73(2): 92–100

    Article  PubMed  CAS  Google Scholar 

  71. Stuart-Harris C. The epidemiology and clinical presentation of herpes virus infections. J Antimicrob Chemother 1983 Sep; 12 Suppl. B: 1–8

    Article  PubMed  Google Scholar 

  72. Kaufman HE, Nesburn AB, Maloney ED. Cure of vaccinia infection by 5-iodo-2′-deoxyuridine. Virology 1962 Dec; 18: 567–9

    Article  PubMed  CAS  Google Scholar 

  73. Angra SK. IDU ocular toxicity. Indian J Ophthalmol 1977 Jul; 25(2): 38–41

    PubMed  CAS  Google Scholar 

  74. Romanowski EG, Roba LA, Wiley L, et al. The effects of corticosteroids of adenoviral replication. Arch Ophthalmol 1996 May; 114(5): 581–5

    Article  PubMed  CAS  Google Scholar 

  75. Romanowski EG, Yates KA, Gordon YJ. Short-term treatment with a potent topical corticosteroid of an acute ocular adenoviral infection in the New Zealand white rabbit. Cornea 2001 Aug; 20(6): 657–60

    Article  PubMed  CAS  Google Scholar 

  76. Gordon YJ, Araullo-Cruz T, Romanowski EG. The effects of topical nonsteroidal anti-inflammatory drugs on adenoviral replication. Arch Ophthalmol 1998 Jul; 116(7): 900–5

    PubMed  CAS  Google Scholar 

  77. Dawson CR, Togni B. Herpes simplex eye infections: clinical manifestations, pathogenesis and management. Surv Ophthalmol 1976 Sep–Oct; 21(2): 121–35

    Article  PubMed  CAS  Google Scholar 

  78. Two fatal cases of adenovirus-related illness in previously healthy young adults: Illinois, 2000. MMWR Morb Mortal Wkly Rep 2001 Jul 6; 50(26): 553–5

    Google Scholar 

  79. O’Brien V. Viruses and apoptosis. J Gen Virol 1998 Aug; 79 (Pt 8): 1833–45

    PubMed  Google Scholar 

  80. Curreli F, Friedman-Kien AE, Flore O. Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Invest 2005 Mar; 115(3): 642–52

    PubMed  CAS  Google Scholar 

  81. Young RC, Hodge DO, Liesegang TJ, et al. Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976–2007: the effect of oral antiviral prophylaxis. Arch Ophthalmol 2010 Sep; 128(9): 1178–83

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysanthi L. Skevaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skevaki, C.L., Galani, I.E., Pararas, M.V. et al. Treatment of Viral Conjunctivitis with Antiviral Drugs. Drugs 71, 331–347 (2011). https://doi.org/10.2165/11585330-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11585330-000000000-00000

Keywords

Navigation