Skip to main content
Log in

Strategies to Optimize Concurrent Training of Strength and Aerobic Fitness for Rowing and Canoeing

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

During the last several decades many researchers have reported an interference effect on muscle strength development when strength and endurance were trained concurrently. The majority of these studies found that the magnitude of increase in maximum strength was higher in the group that performed only strength training compared with the concurrent training group, commonly referred to as the ‘interference phenomenon’. Currently, concurrent strength and endurance training has become essential to optimizing athletic performance in middle- and long-distance events. Rowing and canoeing, especially in the case of Olympic events, with exercise efforts between 30 seconds and 8 minutes, require high amounts of maximal aerobic and anaerobic capacities as well as high levels of maximum strength and muscle power. Thus, strength training, in events such as rowing and canoeing, is integrated into the training plan. However, several studies indicate that the degree of interference is affected by the training protocols and there may be ways in which the interference effect can be minimized or avoided. Therefore, the aim of this review is to recommend strategies, based on research, to avoid or minimize any interference effect when training to optimize performance in endurance sports such as rowing and canoeing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Knuttgen HG, Kraemer WJ. Terminology and measurement in exercise performance. J Appl Sport Sci Res 1987; 1: 1–10

    Google Scholar 

  2. Wilmore JH, Costill DL. Physiology of sport and exercise. 3rd ed. Champaign (IL): Human Kinetics, 2005

    Google Scholar 

  3. Hickson RC, Dvorak BA, Gorostiaga EM, et al. Potentialfor strength and endurance training to amplify enduranceperformance. J Appl Physiol 1988; 65 (5): 2285–90

    PubMed  CAS  Google Scholar 

  4. Johnston RE, Quinn TJ, Kertzer R, et al. Strength training in female distance runners: impact on running economy. J Strength Cond Res 1997; 11 (4): 224–9

    Google Scholar 

  5. Mikkola JS, Rusko HK, Nummela AT. Concurrent endurance and explosive type strength training increases activation andfast force production of leg extensor muscles in enduranceathletes. J Strength Cond Res 2007; 21 (2): 613–20

    PubMed  Google Scholar 

  6. Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performancedeterminants, and performance in well-trainedcyclists. Eur J Appl Physiol 2010; 108 (5): 965–75

    Article  PubMed  Google Scholar 

  7. Balabinis CP, Psarakis CH, Moukas M, et al. Early phase changes by concurrent endurance and strength training. J Strength Cond Res 2003; 17 (2): 393–401

    Article  PubMed  Google Scholar 

  8. Millet GP, Jaouen B, Borrani F, et al. Effects of concurrent endurance and strength training on running economyand VO(2) kinetics. Med Sci Sports Exerc 2002; 34 (8): 1351–9

    Article  PubMed  Google Scholar 

  9. Paavolainen L, Häkkinen K, Hämälä inen, et al. Explosivestrength training improves 5-km running time by improvingrunning economy and muscle power. J Appl Physiol 1999; 86 (5): 1527–33

    PubMed  CAS  Google Scholar 

  10. Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running economy in highlytrained middle and long distance runners. J Strength Cond Res 2006; 20 (4): 947–54

    PubMed  Google Scholar 

  11. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur JAppl Physiol 2003; 89 (1): 1–7

    Article  Google Scholar 

  12. Bishop D. Physiological predictors of flat-water kayak performance in women. Eur J Appl Physiol 2000; 82 (1-2): 91–7

    Article  PubMed  CAS  Google Scholar 

  13. Bourdin M, Messonnier L, Hager JP, et al. Peak power output predicts rowing ergometer performance in elitemale rowers. Int J Sports Med 2004; 25 (5): 368–73

    Article  PubMed  CAS  Google Scholar 

  14. Fry RW, Morton AR. Physiological and kinanthropometric attributes of elite flatwater kayakists. Med Sci Sports Exerc 1991; 23 (11): 1297–301

    PubMed  CAS  Google Scholar 

  15. Izquierdo-Gabarren M, González de Txabarri Expósito R, García-Pallarés J, et al. Concurrent endurance andstrength training not to failure optimizes performancegains. Med Sci Sports Exerc 2010; 42 (6): 1191–9

    PubMed  Google Scholar 

  16. Jacob M, Rooney K, Smith R. The metabolic demands of kayaking: a review. J Sports Sci Med 2008; 7: 1–7

    Google Scholar 

  17. Kramer JF, Leger A, Paterson DH, et al. Rowing performance and selected descriptive, field, and laboratory variables. Can J Appl Physiol 1994; 19 (2): 174–84

    Article  PubMed  CAS  Google Scholar 

  18. Secher NH. Physiological and biomechanical aspects of rowing: implications for training. Sports Med 1993; 15 (1): 24–42

    Article  PubMed  CAS  Google Scholar 

  19. Steinacker JM, Marx TR, Marx U, et al. Oxygen consumption and metabolic strain in rowing ergometer exercise. Eur J Appl Physiol Occup Physiol 1986; 55 (3): 240–7

    Article  PubMed  CAS  Google Scholar 

  20. Tesch P. Physiological characteristics of elite kayak paddlers. Can J Appl Sport Sci 1983; 8 (2): 87–91

    PubMed  CAS  Google Scholar 

  21. García-Pallarés J, García-Ferníndez M, Sánchez-Medina L, et al. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl PhysioL 2010; 110 (1): 99–107

    Article  PubMed  Google Scholar 

  22. García-Pallarés J, Sanchez-Medina L, Carrasco L, et al. Endurance and neuromuscular changes in world-class levelkayakers during a periodized training cycle. Eur J Appl Physiol 2009; 106 (4): 629–38

    Article  PubMed  Google Scholar 

  23. García-Pallarés J, Sánchez-Medina L, Pérez CE, et al. Physiological effects of tapering and detraining in world-classkayakers. Med Sci Sports Exerc 2010; 42 (6): 1209–14

    PubMed  Google Scholar 

  24. Yamamoto LM, Lopez RM, Klau JF, et al. The effects of resistance training on endurance distance running performanceamong highly trained runners: a systematic review. J Strength Cond Res 2008; 22 (6): 2036–44

    Article  PubMed  Google Scholar 

  25. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc 1988; 20 (5 Suppl.): S135–45

    PubMed  CAS  Google Scholar 

  26. Hoff J, Gran A, Helgerud J. Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports 2002; 12 (5): 288–95

    Article  PubMed  CAS  Google Scholar 

  27. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur JAppl Physiol Occup Physiol 1980; 45 (2-3): 255–63

    Article  CAS  Google Scholar 

  28. Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonaland skeletal muscle adaptations. J Appl Physiol 1995; 78 (3): 976–89

    PubMed  CAS  Google Scholar 

  29. Leveritt M, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training: a review. Sports Med 1999; 28 (6): 413–27

    Article  PubMed  CAS  Google Scholar 

  30. Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic andstrength training. Sports Med 2000; 30 (6): 385–94

    Article  PubMed  CAS  Google Scholar 

  31. Coffey VG, Jemiolo B, Edge J, et al. Effect of consecutive repeated sprint and resistance exercise bouts on acuteadaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297 (5): R1441–51

    Article  PubMed  CAS  Google Scholar 

  32. Coffey VG, Pilegaard H, Garnham AP, et al. Consecutive bouts of diverse contractile activity alter acute responsesin human skeletal muscle. J Appl Physiol 2009; 106 (4): 1187–97

    Article  PubMed  CAS  Google Scholar 

  33. Sale DG, MacDougall JD, Jacobs I, et al. Interaction between concurrent strength and endurance training. J Appl Physiol 1990; 68 (1): 260–70

    PubMed  CAS  Google Scholar 

  34. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004; 36 (4): 674–88

    Article  PubMed  Google Scholar 

  35. Bell GJ, Syrotuik D, Martin TP, et al. Effect of strength and endurance training on skeletal muscle properties and hormoneconcentrations in humans. Eur J Appl Physiol 2000; 81 (5): 418–27

    Article  PubMed  CAS  Google Scholar 

  36. Craig BW, Lucas J, Pohlman R, et al. The effects of running, weightlifting and a combination of both on growth hormonerelease. J Appl Sport Sci Res 1991; 5 (4): 198–203

    Google Scholar 

  37. Dudley GA, Djamil R. Incompatibility of endurance and strength training modes of exercise. J Appl Physiol 1985; 59 (5): 1446–51

    PubMed  CAS  Google Scholar 

  38. Glowacki SP, Martin SE, Martin SE, et al. Effects of resistance, endurance, and concurrent exercise on training outcomes inmen. Med Sci Sports Exerc 2004; 36 (12): 2119–27

    PubMed  Google Scholar 

  39. Izquierdo M, Häkkinen K, Ibañez J, et al. Effects of combined resistance and cardiovascular training on strength,power, muscle cross-sectional area, and endurance markersin middle-aged men. Eur J Appl Physiol 2005; 94 (1-2): 70–5

    Article  PubMed  Google Scholar 

  40. Izquierdo M, Ibañez J, Hakkinen K, et al. Once weekly combined resistance and cardiovascular training in healthyolder men. Med Sci Sports Exerc 2004; 36 (3): 435–43

    Article  PubMed  Google Scholar 

  41. Izquierdo M, Hakkinen K, Ibañez J, et al. Effects of strength training on submaximal and maximal endurance performancecapacity in middle-aged and older men. J Strength Cond Res 2003; 17 (1): 129–39

    PubMed  Google Scholar 

  42. Karavirta L, Häkkinen A, Sillanpää E, et al. Effects of combined endurance and strength training on musclestrength, power and hypertrophy in 40-67 year old men. Scand J Med Sci Sports. Epub 2009 Dec18

    Google Scholar 

  43. McCarthy JP, Agre JC, Graf BK, et al. Compatibility of adaptive responses with combining strength and endurancetraining. Med Sci Sports Exerc 1995; 27 (3): 429–36

    PubMed  CAS  Google Scholar 

  44. Bell GJ, Syrotuik DG, Attwood K, et al. Maintenance of strength gains while performing endurance training inoarswomen. Can J Appl Phys 1993; 18 (1): 104–15

    Article  CAS  Google Scholar 

  45. Hennessy LC, Watson WS. The interference effects of training for strength and endurance simultaneously. J Strength Cond Res 1994; 8 (1): 12–9

    Google Scholar 

  46. Mikkola J, Rusko H, Nummela A, et al. Concurrent endurance and explosive type strength training improvesneuromuscular and anaerobic characteristics in youngdistance runners. Int J Sports Med 2007; 28 (7): 602–11

    Article  PubMed  CAS  Google Scholar 

  47. Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc 2006; 38 (11): 1965–70

    Article  PubMed  Google Scholar 

  48. Häkkinen K, Alen M, Kraemer WJ, et al. Neuromuscular adaptations during concurrent strength and endurancetraining versus strength training. Eur J Appl Physiol 2003; 89 (1): 42–52

    Article  PubMed  Google Scholar 

  49. Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc 2006; 38 (11): 1939–44

    Article  PubMed  Google Scholar 

  50. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 2007; 37 (9): 737–63

    Article  PubMed  Google Scholar 

  51. Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 2009; 34 (3): 355–61

    Article  PubMed  CAS  Google Scholar 

  52. Chromiak JA, Mulvaney DR. The effects of combined strength and endurance training on strength development. J Appl Sports Sci Res 1990; 4 (2): 55–60

    Google Scholar 

  53. Costill DL, Bowers R, Branam G, et al. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol 1971; 31 (6): 834–8

    PubMed  CAS  Google Scholar 

  54. Creer A, Gallagher P, Slivka D, et al. Influence of muscle glycogen availability on ERK1/2 and Akt signaling afterresistance exercise in human skeletal muscle. J Appl Physiol 2005; 99 (3): 950–6

    Article  PubMed  CAS  Google Scholar 

  55. Luginbuhl AJ, Dudley GA, Staron RS. Fiber type changes in rat skeletal muscle after intense interval training. Histochemistry 1984; 81 (1): 55–8

    Article  PubMed  CAS  Google Scholar 

  56. Schantz P, Henriksson J. Increases in myofibrillar ATPase intermediate human skeletal muscle fibers in response toendurance training. Muscle Nerve 1983; 6 (8): 553–6

    Article  PubMed  CAS  Google Scholar 

  57. Dudley GA, Fleck SJ. Strength and endurance training: are they mutually exclusive? Sports Med 1987; 4 (2): 79–85

    Article  PubMed  CAS  Google Scholar 

  58. Booth FW, Watson PA. Control of adaptations in protein levels in response to exercise. Fed Proc 1985; 44 (7): 2293–300

    PubMed  CAS  Google Scholar 

  59. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 2000; 20: 457–83

    Article  PubMed  CAS  Google Scholar 

  60. Baker DR, Wilson G, Carlyon R. Periodization: the effect on strength of manipulating volume and intensity. J Strength Cond Res 1994; 8 (4): 235–42

    Google Scholar 

  61. Fleck SJ. Periodized strength training: a critical review. J Strength Cond Res 1999; 13 (1): 82–9

    Google Scholar 

  62. Willoughby DS. The effects of mesocycle-length weight training programmes involving periodization and partially equated volumes on upper and lower body strength. J Strength Cond Res 1993; 7 (1): 2–8

    Google Scholar 

  63. Bondarchuk AP. Constructing a training system. Track Technique 1988; 102: 3254–69

    Google Scholar 

  64. Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness 2008; 48 (1): 65–75

    PubMed  CAS  Google Scholar 

  65. Issurin VB. New horizons for the methodology and physiology of training periodization. Sports Med 2010; 40 (3): 189–206

    Article  PubMed  Google Scholar 

  66. Bompa T, Haff G. Periodization: theory and methodology of training. 5th rev. ed. Champaign (IL): Human Kinetics, 2009

    Google Scholar 

  67. McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc 2002; 34 (3): 511–9

    Article  PubMed  Google Scholar 

  68. Bell GJ, Petersen SR, Wessel J, et al. Physiological adaptations to concurrent endurance training and low velocityresistance training. Int J Sports Med 1991; 12 (4): 384–90

    Article  PubMed  CAS  Google Scholar 

  69. Hunter G, Demment R, Miller D. Development of strength andmaximum oxygen uptake during simultaneous trainingfor strength and endurance. J Sports Med Phys Fitness 1987; 27 (3): 269–75

    PubMed  CAS  Google Scholar 

  70. González-Badillo JJ, Gorostiaga EM, Arellano R, et al. Moderate resistance training volume produces more favorable strength gains than high or low volumes. J Strength Cond Res 2005; 19 (3): 689–97

    PubMed  Google Scholar 

  71. González-Badillo JJ, Izquierdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumesin competitive weight lifters. J Strength Cond Res 2006; 20 (1): 73–81

    PubMed  Google Scholar 

  72. Izquierdo M, Ibañez J, Calbet JA. Neuromuscular fatigue after resistance training. Int J Sports Med 2009; 30 (8): 614–62

    Article  PubMed  CAS  Google Scholar 

  73. Kraemer WJ, Koziris LP. Muscle strength training: techniques and considerations. Phys Ther Prac 1992; 2 (1): 54–68

    Google Scholar 

  74. Sale D. Neural adaptation to strength training. In: Komi P, editor. Strength and power in sport. Oxford: Blackwell Scientific Publications, 1992: 249–65

    Google Scholar 

  75. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56 (4): 831–8

    PubMed  CAS  Google Scholar 

  76. Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletalmuscle. J Appl Physiol 1985; 59 (2): 320–7

    PubMed  CAS  Google Scholar 

  77. MacDougall D, Sale D. Continuous vs interval training: a review for the athlete and the coach. Can J Appl Sport Sci 1981; 6 (2): 93–7

    PubMed  CAS  Google Scholar 

  78. de Souza EO, Tricoli V, Franchini E, et al. Acute effect of two aerobic exercise modes on maximum strength and strengthendurance. J Strength Cond Res 2007; 21 (4): 1286–90

    PubMed  Google Scholar 

  79. Leveritt M, MacLaughlin H, Abernethy PJ. Changes in leg strength 8 and 32 h after endurance exercise. J Sports Sci 2000; 18 (11): 865–71

    Article  PubMed  CAS  Google Scholar 

  80. Sale DG, Jacobs I, MacDougall JD, et al. Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exer 1990; 22 (3): 348–56

    CAS  Google Scholar 

  81. Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res 2003; 17 (4): 638–44

    PubMed  Google Scholar 

  82. Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence oftraining? J Sports Sci 1993; 11 (6): 485–91

    Article  PubMed  CAS  Google Scholar 

  83. Chtara M, Chaouachi A, Levin GT et al. Effect of concurrent endurance and circuit resistance training sequenceon muscular strength and power development. J Strength Cond Res 2008; 22 (4): 1037–45

    Article  PubMed  Google Scholar 

  84. Izquierdo M, González-Badillo JJ, Häkkinen K, et al. Effect of loading on unintentional lifting velocity declines duringsingle sets of repetitions to failure during upper and lowerextremitymuscle actions. Int J Sports Med 2006; 27 (9): 718–24

    Article  PubMed  CAS  Google Scholar 

  85. Izquierdo M, Ibañez J, González-Badillo JJ, et al. Differential effects of strength training leading to failure versusnot to failure on hormonal responses, strength, and musclepower gains. J Appl Physiol 2006; 100 (5): 1647–56

    Article  PubMed  CAS  Google Scholar 

  86. Drinkwater EJ, Lawton TW, Lindsell RP, et al. Training leading to repetition failure enhances bench press strength gains inelite junior athletes. J Strength Cond Res 2005; 19 (2): 382–8

    PubMed  Google Scholar 

  87. Folland JP, Irish CS, Roberts JC, et al. Fatigue is not a necessary stimulus for strength gains during resistancetraining. Br J Sports Med 2002; 36 (5): 370–4

    Article  PubMed  CAS  Google Scholar 

  88. Kramer JB, Stone MH, O’Bryant HS, et al. Effectsof single vs. multiple sets of weight training: impact of volume, intensity,and variation J Strength Cond Res 1997; 11 (3): 143–7

    Google Scholar 

  89. Rodney KJ, Herbert RD, Balnave RJ. Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc 1994; 26 (9): 1160–4

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús García-Pallarés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Pallarés, J., Izquierdo, M. Strategies to Optimize Concurrent Training of Strength and Aerobic Fitness for Rowing and Canoeing. Sports Med 41, 329–343 (2011). https://doi.org/10.2165/11539690-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11539690-000000000-00000

Keywords

Navigation