Skip to main content
Log in

Oxygen consumption and metabolic strain in rowing ergometer exercise

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

Oxygen consumption (\(\dot V_{O_2 } \)) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device.\(\dot V_{O_2 } \) was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W · kg−1 or more were analysed.\(\dot V_{O_2 } \) and heart rate (HR) for each working stage were measured and the regression line of\(\dot V_{O_2 } \) on the work load (P) and an estimation error (sxy) were calculated:\(\dot V_{O_2 } = 12.5 \cdot P + 415.2\) (ml · min−1) (Sxy = ± 337 ml,r = 0.98)

Good reproducibility was found in repeated examinations.

Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists.\(\dot V_{O_2 } \) of rowing was about 600 ml · min−1 higher than for bicycling in the submaximal stages for both groups. The\(\dot V_{O_{_2 max} } \) of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater\(\dot V_{O_2 } \) on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrand P-O, Saltin B (1961) Maximal oxygen uptake and heart rate during the first minute of heavy muscular excerice. J Appl Physiol 16:977–981

    CAS  PubMed  Google Scholar 

  • Bergh U, Kanstrup IL, Ekblom B (1976) Maximal oxygen uptake during exercise with various combinations of leg and arm work. J Appl Physiol 41:191–196

    CAS  PubMed  Google Scholar 

  • Carey P, Stensland M, Hartley LH (1974) Comparison of oxygen uptake during maximal work on the treadmill and the rowing ergometer. Med Sci Sports 6:101–103

    CAS  PubMed  Google Scholar 

  • Celentano F, Cortili G, DiPrampero PE, Cerretelli P (1974) Mechanical aspects of rowing. J Appl Physiol 36:642–647

    CAS  PubMed  Google Scholar 

  • Cerretelli P, DiPrampero PE, Sassi G (1967) The heart rate —\(\dot V_{O_2 } \) relationship in different types of dynamic exercise. Arch di Fisiol II–IV:358–365

    Google Scholar 

  • Cunningham DA, Goode PB, Critz JB (1975) Cardiorespiratory response to exercise on a rowing and bicycle ergometer. Med Sci Sports 7:37–43

    CAS  PubMed  Google Scholar 

  • DiPrampero PE (1973) Grundlagen der anaeroben Energiebereitstellung und der O2-Schuld bei körperlichen Höchstbelastungen. Med Sport 8:1–13

    Google Scholar 

  • DiPrampero PE, Cortili G, Celentano F, Cerretelli P (1971) Physiological aspects of rowing. J Appl Physiol 31:853–857

    CAS  Google Scholar 

  • Fiegenbaum FA, Steinacker JM, Marx TR, Grünert M, Wodick RE (1983) Exercise-specific medical examination of oarsmen and cyclists for the diagnosis of exercise efficiency. Int J Sports Med 4:71

    Google Scholar 

  • Hagberg JM (1984) Physiological implications of the lactate threshold. Int J Sports Med 5:[Suppl] 106–109

    CAS  Google Scholar 

  • Hagerman FC, Addington WW, Gaensler EA (1972) A selection of selected physiological variables among outstanding competitive sportsmen. J Sports Med 12:12–22

    CAS  Google Scholar 

  • Hagerman FC, McKirnan MD, Pompei JA (1975) Maximal oxygen consumption of conditioned and unconditioned oarsmen. J Sports Med 15:43–48

    CAS  Google Scholar 

  • Hagerman FC, Connors MC, Gault JA, Hagerman GR, Polinski WJ (1978) Energy expenditure during simulated rowing. J Appl Physiol 45:87–93

    CAS  PubMed  Google Scholar 

  • Jackson RC, Secher NH (1976) The aerobic demands of rowing in two Olympic rowers. Med Sci Sports 8:168–170

    CAS  PubMed  Google Scholar 

  • Kindermann J, Haralambie G, Kock J, Keul J (1973) SÄure-Basen-Haushalt und Lactatspiegel im arteriellen Blut nach olympischen WettkÄmpfen. Med Welt 24:1176–1178

    CAS  PubMed  Google Scholar 

  • Liljestrand G, Lindhart J (1920) Zur Physiologie des Ruderns. Skand Arch Physiol 39:215–235

    CAS  Google Scholar 

  • Linnarson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand [Suppl] 415

    Google Scholar 

  • Mader A, Hollmann W (1977) Zur Bedeutung der StoffwechselleistungsfÄhigkeit des Eliteruderers in Training und Wettkampf. Beiheft zum Leistungssport 9:8–62

    Google Scholar 

  • Margaria R (1979) Biomechanics and energetics of muscular exercise. Clarendon Press Oxford

    Google Scholar 

  • Margaria R, Mangili F, Cuttica F, Cerretelli P (1965) The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8:49–54

    Google Scholar 

  • Marx Th (1985) Untersuchungen zur sportartspezifischen Leistungsdiagnostik mit dem Ruderergometer. Dissertation UniversitÄt Ulm

  • Mellerowics H, Hansen G (1965) SauerstoffkapazitÄt und andere spiro-ergometrische Maximalwerte der Ruder-Olympiasieger im Vierer m. St. vom Berliner Ruderclub. Sportarzt Sportmed 16:188–191

    Google Scholar 

  • Mickelson TC, Hagerman FC (1982) Anaerobic thresholds measurements of elite oarsmen. Med Sci Sports Exercise 14:440–444

    CAS  Google Scholar 

  • Nolte V, Mader A, Klauck J (1983) Vergleich biomechanischer Merkmale der Ruderbewegung auf dem Gjessing-Ergometer und im fahrenden Boot. In: Sport: Leistung und Gesundheit (Dtsch. SportÄrztekongre\ 1982), Dtsch. Ärzteverlag, Köln, 513–518

    Google Scholar 

  • Nowacki P, Krause R, Adam K (1969) Maximal oxygen uptake by the rowing crew winning the Olympic gold medal 1968. Pflügers Arch 3 12:R66-R67

    Google Scholar 

  • Pearce DH, Milhorn HT (1977) Dynamic and steady-state respiratory responses to bicycle exercise. J Appl Physiol 42:959–967

    CAS  PubMed  Google Scholar 

  • Pendergast D, Leibowitz R, Wilson D, Cerretelli P (1983) The effect of preceeding anaerobic exercise on aerobic and anaerobic work. Eur J Appl Physiol 52:29–35

    CAS  Google Scholar 

  • Racine P, Higelin JC, Engelhard JC, Mindt W (1975) An instrument for the rapid determination of 1-lactate in biological fluids. Med Instr 9:11–14

    CAS  Google Scholar 

  • Roth W, Hasart E, Wolf W, Pansold B (1983) Untersuchungen zur Dynamik der Energiebereitstellung wÄhrend maximaler Mittelzeitausdauerbelastung. Med Sport 23:107–114

    Google Scholar 

  • Scharschmidt F, Pieper KS (1984) Die aerobe LeistungsfÄhigkeit junger Rudersportler beiderlei Geschlechts. Med Sport 24:43–48

    Google Scholar 

  • Schneider E (1980) Leistungsanalyse bei Rudermannschaften. Bad Homburg, Limpert Dtsch. Ärzteverlag, Köln, 1983, 169–173

    Google Scholar 

  • Secher NH, Vaage O, Jensen K, Jackson RC (1983) Maximum aerobic power in oarsmen. Eur J Appl Physiol 51:155–162

    Article  Google Scholar 

  • Secher NH (1983) The physiology of rowing. J Sports Sci 1:23–53

    Google Scholar 

  • Steinacker JM, Marx TR, Thiel U (1983a) The construction of an improved rowing ergometer for sports-specific exercise testing. Int J Sports Med 4:69–70

    Google Scholar 

  • Steinacker JM, Marx TR, Fiegenbaum FA, Wodick RE (1983b) Die Ruderspiroergometrie als eine Methode der sportartspezifischen Leistungsdiagnostik. Dtsch Z Sportmed 34:333–342

    Google Scholar 

  • Steinacker JM, Marx TR, Thiel U (1984a) A rowing ergometer test with stepwise increased work loads,in: Current Topics in Sports Medicine. Urban und Schwarzenberg, München Wien Baltimore, 175–187

    Google Scholar 

  • Steinacker JM, Marx TR, Wodick RE (1984b) The oxygen consumption for rowing. Pflügers Arch 400:[Suppl 1] R 61

    Google Scholar 

  • Steinacker JM, Marx TR, Marx U, Grünert M, Lormes W, Neumann K, Wodick RE (1984c) Examinations on the physical performance of rowers in rowing spiroergometry with a multi stage test and a two stage test. Int J Sports Med 5:297

    Google Scholar 

  • StrØmme SB, Ingjer F, Meen HD (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42:833–837

    PubMed  Google Scholar 

  • Whipp BJ, Ward SA (1980) Ventilatory control dynamics during muscular exercise in man. Int J Sports Med 1:146–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinacker, J.M., Marx, T.R., Marx, U. et al. Oxygen consumption and metabolic strain in rowing ergometer exercise. Europ. J. Appl. Physiol. 55, 240–247 (1986). https://doi.org/10.1007/BF02343794

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02343794

Key words

Navigation