Skip to main content
Log in

Childhood Medulloblastoma

Current Status of Biology and Treatment

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Medulloblastoma, a primitive neuro-ectodermal tumour that arises in the posterior fossa, is the most common malignant brain tumour occurring in childhood. Over the past half century, the long-term survival for children with medulloblastoma has improved remarkably from a certain fatal diagnosis to a cancer that is often curable. Although overall survival for children with non-disseminated and non-anaplastic medulloblastoma can approach 80%, the current multidisciplinary therapeutic approach is not without long-term sequelae. Chemotherapy has improved the long-term survival and allowed for reductions in the amount of radiation given, thereby reducing some of the long-term toxicities. In this review, we describe the current understanding of the basic biology of medulloblastoma and report on the current active chemotherapeutic agents utilized in medulloblastoma therapy. Ultimately, our understanding of the basic biology of medulloblastoma may lead to further advances in therapy by providing targets that are more specific and potentially less toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. CBTRUS. Statistical report: primary brain tumors in the United States, 2005–2006 [online]. Hinsdale (IL): Central Brain Tumor Registry of United States, 2009. Available from URL: http://www.cbtrus.org [Accessed 2010 Jan 26]

  2. Chan AW, Tarbell NJ, Black PM, et al. Adult medullo-blastoma: prognostic factors and patterns of relapse. Neurosurgery 2000 Sep; 47(3): 623–31; discussion 31-2

    PubMed  CAS  Google Scholar 

  3. Halperin EC, Friedman HS. Is there a correlation between duration of presenting symptoms and stage of medullo-blastoma at the time of diagnosis? Cancer 1996 Aug 15; 78(4): 874–80

    Article  PubMed  CAS  Google Scholar 

  4. Coffin CM, Braun JT, Wick MR, et al. A clinicopathologic and immunohistochemical analysis of 53 cases of medulloblastoma with emphasis on synaptophysin expression. Mod Pathol 1990 Mar; 3(2): 164–70

    PubMed  CAS  Google Scholar 

  5. Burger PC, Grahmann FC, Bliestle A, et al. Differentiation in the medulloblastoma: a histological and immunohistochemical study. Acta Neuropathol 1987; 73(2): 115–23

    Article  PubMed  CAS  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114(2): 97–109

    Article  PubMed  Google Scholar 

  7. Eberhart CG, Burger PC. Anaplasia and grading in medulloblastomas. Brain Pathol 2003 Jul; 13(3): 376–85

    Article  PubMed  Google Scholar 

  8. Eberhart CG, Kepner JL, Goldthwaite PT, et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 2002 Jan 15; 94(2): 552–60

    Article  PubMed  Google Scholar 

  9. Gajjar A, Hernan R, Kocak M, et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 2004 Mar 15; 22(6): 984–93

    Article  PubMed  CAS  Google Scholar 

  10. Packer RJ, Rood BR, MacDonald TJ. Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg 2003 Jul; 39(2): 60–7

    Article  PubMed  Google Scholar 

  11. Zeltzer PM, Boyett JM, Finlay JL, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 1999; 17(3): 832–45

    PubMed  CAS  Google Scholar 

  12. Wiener MD, Boyko OB, Friedman HS, et al. False-positive spinal MR findings for subarachnoid spread of primary CNS tumor in postoperative pediatric patients. AJNR Am J Neuroradiol 1990; 11(6): 1100–3

    PubMed  CAS  Google Scholar 

  13. Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005 Mar 10; 352(10): 978–86

    Article  PubMed  CAS  Google Scholar 

  14. Dhall G, Grodman H, Ji L, et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr Blood Cancer 2008 Jun; 50(6): 1169–75

    Article  PubMed  Google Scholar 

  15. Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2006 Sep 1; 24(25): 4202–8

    Article  PubMed  CAS  Google Scholar 

  16. Gottardo NG, Gajjar A. Current therapy for medulloblastoma. Curr Treat Options Neurol 2006; 8(4): 319–34

    Article  PubMed  Google Scholar 

  17. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006 Oct; 7(10): 813–20

    Article  PubMed  Google Scholar 

  18. Fouladi M, Gilger E, Kocak M, et al. Intellectual and functional outcome of children 3 years old or younger who have CNS malignancies. J Clin Oncol 2005 Oct 1; 23(28): 7152–60

    Article  PubMed  Google Scholar 

  19. Geyer JR, Sposto R, Jennings M, et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J Clin Oncol 2005 Oct 20; 23(30): 7621–31

    Article  PubMed  Google Scholar 

  20. Geyer JR, Zeltzer PM, Boyett JM, et al. Survival of infants with primitive neuroectodermal tumors or malignant ependymomas of the CNS treated with eight drugs in 1 day: a report from the Childrens Cancer Group. J Clin Oncol 1994 Aug; 12(8): 1607–15

    PubMed  CAS  Google Scholar 

  21. Duffner PK, Horowitz ME, Krischer JP, et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol 1999 Apr; 1(2): 152–61

    PubMed  CAS  Google Scholar 

  22. Duffner PK, Horowitz ME, Krischer JP, et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med 1993 Jun 17; 328(24): 1725–31

    Article  PubMed  CAS  Google Scholar 

  23. Grill J, Sainte-Rose C, Jouvet A, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 2005; 6: 573–80

    Article  PubMed  CAS  Google Scholar 

  24. Grotzer MA, von Hoff K, von Bueren AO, et al. Which clinical and biological tumor markers proved predictive in the prospective multicenter trial HIT’91: implications for investigating childhood medulloblastoma. Klin Padiatr 2007 Nov–Dec; 219(6): 312–7

    Article  PubMed  CAS  Google Scholar 

  25. Ellison DW, Onilude OE, Lindsey JC, et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 2005 Nov 1; 23(31): 7951–7

    Article  PubMed  CAS  Google Scholar 

  26. Eberhart CG, Kratz J, Wang Y, et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 2004 May; 63(5): 441–9

    PubMed  CAS  Google Scholar 

  27. Segal RA, Goumnerova LC, Kwon YK, et al. Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci U S A 1994; 91(26): 12867–71

    Article  PubMed  CAS  Google Scholar 

  28. Korshunov A, Savostikova M, Ozerov S. Immunohistochemical markers for prognosis of average-risk pediatric medulloblastomas: the effect of apoptotic index, TrkC, and C-myc expression. J Neurooncol 2002; 58(3): 271–9

    Article  PubMed  Google Scholar 

  29. Aldosari N, Bigner SH, Burger PC, et al. MYCC and MYCN oncogene amplification in medulloblastoma: a fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 2002 May; 126(5): 540–4

    PubMed  Google Scholar 

  30. Grotzer MA, Hogarty MD, Janss AJ, et al. MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 2001 Aug; 7(8): 2425–33

    PubMed  CAS  Google Scholar 

  31. Hernan R, Fasheh R, Calabrese C, et al. ERBB2 upregulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res 2003 Jan 1; 63(1): 140–8

    PubMed  CAS  Google Scholar 

  32. Scheurlen WG, Schwabe GC, Joos S, et al. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 1998 Jul; 16(7): 2478–85

    PubMed  CAS  Google Scholar 

  33. Haberler C, Slavc I, Czech T, et al. Histopathological prognostic factors in medulloblastoma: high expression of survivin is related to unfavourable outcome. Eur J Cancer 2006; 42(17): 2996–3003

    Article  PubMed  CAS  Google Scholar 

  34. Ellison DW, Clifford SC, Gajjar A, et al. What’s new in neuro-oncology? Recent advances in medulloblastoma. Eur J Paediatr Neurol 2003; 7(2): 53–66

    Article  PubMed  Google Scholar 

  35. Fan X, Eberhart CG. Medulloblastoma stem cells. J Clin Oncol 2008 Jun 10; 26(17): 2821–7

    Article  PubMed  CAS  Google Scholar 

  36. Gilbertson RJ, Gutmann DH. Tumorigenesis in the brain: location, location, location. Cancer Res 2007 Jun 15; 67(12): 5579–82

    Article  PubMed  CAS  Google Scholar 

  37. Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol 2004 Apr; 5(4): 209–18

    Article  PubMed  Google Scholar 

  38. Gilbertson RJ, Gajjar A. Molecular biology of medulloblastoma: will it ever make a difference to clinical management? J Neurooncol 2005 Dec; 75(3): 273–8

    Article  PubMed  CAS  Google Scholar 

  39. Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis 2008; 3(32): 1–16

    Google Scholar 

  40. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996 Jun 14; 85(6): 841–51

    Article  PubMed  CAS  Google Scholar 

  41. Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996 Jun 14; 272(5268): 1668–71

    Article  PubMed  CAS  Google Scholar 

  42. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron 1999 Jan; 22(1): 103–14

    Article  PubMed  CAS  Google Scholar 

  43. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci 2001; 24: 385–428

    Article  PubMed  CAS  Google Scholar 

  44. Lee Y, Miller HL, Jensen P, et al. A molecular fingerprint for medulloblastoma. Cancer Res 2003 Sep 1; 63(17): 5428–37

    PubMed  CAS  Google Scholar 

  45. Pietsch T, Waha A, Koch A, et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 1997 Jun 1; 57(11): 2085–8

    PubMed  CAS  Google Scholar 

  46. Zurawel RH, Allen C, Chiappa S, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 2000 Jan; 27(1): 44–51

    Article  PubMed  CAS  Google Scholar 

  47. Zurawel RH, Allen C, Wechsler-Reya R, et al. Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes Cancer 2000 May; 28(1): 77–81

    Article  PubMed  CAS  Google Scholar 

  48. Pan E, Pellarin M, Holmes E, et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 2005 Jul 1; 11(13): 4733–40

    Article  PubMed  CAS  Google Scholar 

  49. Di Marcotullio L, Ferretti E, De Smaele E, et al. REN(KCTD11) is a suppressor of hedgehog signalling and is deleted in human medulloblastoma. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10833–8

    Article  PubMed  Google Scholar 

  50. De Smaele E, Di Marcotullio L, Ferretti E, et al. Chromosome 17p deletion in human medulloblastoma: a missing checkpoint in the Hedgehog pathway. Cell Cycle 2004 Oct; 3(10): 1263–6

    Article  PubMed  Google Scholar 

  51. Fiuza UM, Arias AM. Cell and molecular biology of Notch. J Endocrinol 2007 Sep; 194(3): 459–74

    Article  PubMed  CAS  Google Scholar 

  52. Shih Ie M, Wang TL. Notch signalling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 2007 Mar 1; 67(5): 1879–82

    Article  PubMed  CAS  Google Scholar 

  53. Lissemore JL, Starmer WT. Phylogenetic analysis of vertebrate and invertebrate Delta/Serrate/LAG-2 (DSL) proteins. Mol Phylogenet Evol 1999 Mar; 11(2): 308–19

    Article  PubMed  CAS  Google Scholar 

  54. Singh SK, Clarke ID, Hide T, et al. Cancer stem cells in nervous system tumors. Oncogene 2004 Sep 20; 23(43): 7267–73

    Article  PubMed  CAS  Google Scholar 

  55. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003 Sep 15; 63(18): 5821–8

    PubMed  CAS  Google Scholar 

  56. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004 Nov 18; 432(7015): 396–401

    Article  PubMed  CAS  Google Scholar 

  57. Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006 Aug 1; 66(15): 7445–52

    Article  PubMed  CAS  Google Scholar 

  58. Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 2000 Apr; 59(4): 333–7

    PubMed  CAS  Google Scholar 

  59. Clifford SC, Lusher ME, Lindsey JC, et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 2006 Nov; 5(22): 2666–70

    Article  PubMed  CAS  Google Scholar 

  60. Salaroli R, Di Tomaso T, Ronchi A, et al. Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin? J Neurooncol 2008; 90(3): 243–51

    Article  PubMed  CAS  Google Scholar 

  61. Kratz JE, Stearns D, Huso DL, et al. Expression of stabilized beta-catenin in differentiated neurons of transgenic mice does not result in tumor formation. BMC Cancer 2002 Dec 2; 233: 1–9

    Google Scholar 

  62. Gilbertson RJ, Perry RH, Kelly PJ, et al. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 1997 Aug 1; 57(15): 3272–80

    PubMed  CAS  Google Scholar 

  63. Gilbertson R, Wickramasinghe C, Hernan R, et al. Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 2001 Sep 1; 85(5): 705–12

    Article  PubMed  CAS  Google Scholar 

  64. Slongo ML, Molena B, Brunati AM, et al. Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol 2007 Oct; 9(4): 384–92

    Article  PubMed  CAS  Google Scholar 

  65. Patti R, Reddy CD, Geoerger B, et al. Autocrine secreted insulin-like growth factor-I stimulates MAP kinase-dependent mitogenic effects in human primitive neuro-ectodermal tumor/medulloblastoma. Int J Oncol 2000 Mar; 16(3): 577–84

    PubMed  CAS  Google Scholar 

  66. Hahn H, Wojnowski L, Specht K, et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 2000 Sep 15; 275(37): 28341–4

    Article  PubMed  CAS  Google Scholar 

  67. Li Y, Guessous F, Johnson EB, et al. Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Lab Invest 2008 Feb; 88(2): 98–111

    Article  PubMed  CAS  Google Scholar 

  68. Li Y, Lal B, Kwon S, et al. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res 2005 Oct 15; 65(20): 9355–62

    Article  PubMed  CAS  Google Scholar 

  69. Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001 Jan 15; 61(2): 513–6

    PubMed  CAS  Google Scholar 

  70. Hallahan AR, Pritchard JI, Hansen S, et al. The SmoA1 mouse model reveals that notch signalling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 2004 Nov 1; 64(21): 7794–800

    Article  PubMed  CAS  Google Scholar 

  71. Goodrich LV, Milenkovic L, Higgins KM, et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997 Aug 22; 277(5329): 1109–13

    Article  PubMed  CAS  Google Scholar 

  72. Hatton BA, Villavicencio EH, Tsuchiya KD, et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res 2008 Mar 15; 68(6): 1768–76

    Article  PubMed  CAS  Google Scholar 

  73. Romer J, Curran T. Targeting medulloblastoma: small-molecule inhibitors of the Sonic hedgehog pathway as potential cancer therapeutics. Cancer Res 2005 Jun 15; 65(12): 4975–8

    Article  PubMed  CAS  Google Scholar 

  74. Romer JT, Kimura H, Magdaleno S, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 2004 Sep; 6(3): 229–40

    Article  PubMed  CAS  Google Scholar 

  75. Matthay KK, Villablanca JG, Seeger RC, et al., on behalf of the Children’s Cancer Group. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cisretinoic acid. N Engl J Med 1999 Oct 14; 341(16): 1165–73

    Article  PubMed  CAS  Google Scholar 

  76. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008 Mar 1; 111(5): 2505–15

    Article  PubMed  CAS  Google Scholar 

  77. Chang Q, Chen Z, You J, et al. All-trans-retinoic acid induces cell growth arrest in a human medulloblastoma cell line. J Neurooncol 2007 Sep; 84(3): 263–7

    Article  PubMed  CAS  Google Scholar 

  78. Hallahan AR, Pritchard JI, Chandraratna RA, et al. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 2003 Aug; 9(8): 1033–8

    Article  PubMed  CAS  Google Scholar 

  79. Damodar Reddy C, Guttapalli A, Adamson PC, et al. Anticancer effects of fenretinide in human medulloblastoma. Cancer Lett 2006 Jan 18; 231(2): 262–9

    Article  PubMed  CAS  Google Scholar 

  80. Spiller SE, Ditzler SH, Pullar BJ, et al. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J Neurooncol 2008 Apr; 87(2): 133–41

    Article  PubMed  CAS  Google Scholar 

  81. Peretto I, La Porta E. Gamma-secretase modulation and its promise for Alzheimer’s disease: a medicinal chemistry perspective. Curr Top Med Chem 2008; 8(1): 38–46

    Article  PubMed  CAS  Google Scholar 

  82. Evin G. Gamma-secretase modulators: hopes and setbacks for the future of Alzheimer’s treatment. Expert Rev Neurother 2008 Nov; 8(11): 1611–3

    Article  PubMed  Google Scholar 

  83. Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002 Aug 30; 297(5586): 1559–61

    Article  PubMed  CAS  Google Scholar 

  84. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361(12): 1173–8

    Article  PubMed  CAS  Google Scholar 

  85. Emanuel SL, Hughes TV, Adams M, et al. Cellular and in vivo activity of JNJ-28871063, a nonquinazoline panErbB kinase inhibitor that crosses the blood-brain barrier and displays efficacy against intracranial tumors. Mol Pharmacol 2008 Feb; 73(2): 338–48

    Article  PubMed  CAS  Google Scholar 

  86. Easwaran V, Pishvaian M, Salimuddin, et al. Cross-regulation of beta-catenin-LEF/TCF and retinoid signalling pathways. Curr Biol 1999 Dec 2; 9(23): 1415–8

    Article  PubMed  CAS  Google Scholar 

  87. Mulhern RK, Merchant TE, Gajjar A, et al. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol 2004; 5(7): 399–408

    Article  PubMed  Google Scholar 

  88. Duffner P. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 2004; 10(6): 293–310

    Article  PubMed  Google Scholar 

  89. Evans AE, Jenkin RD, Sposto R, et al. The treatment of medulloblastoma: results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg 1990; 72(4): 572–82

    Article  PubMed  CAS  Google Scholar 

  90. Tait DM, Thornton-Jones H, Bloom HJ, et al. Adjuvant chemotherapy for medulloblastoma: the first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur J Cancer 1990; 26(4): 464–9

    PubMed  CAS  Google Scholar 

  91. Taylor RE, Bailey CC, Robinson K, et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J Clin Oncol 2003 Apr 15; 21(8): 1581–91

    Article  PubMed  CAS  Google Scholar 

  92. Packer RJ, Goldwein JW, Nicholson HS, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group study. J Clin Oncol 1999; 17: 2127–36

    PubMed  CAS  Google Scholar 

  93. Kretschmar CS, Tarbell NJ, Kupsky W, et al. Pre-irradiation chemotherapy for infants and children with medulloblastoma: a preliminary report. J Neurosurg 1989; 71(6): 820–5

    Article  PubMed  CAS  Google Scholar 

  94. Mosijczuk AD, Nigro MA, Thomas PRM, et al. Preradiation chemotherapy in advanced medulloblastoma: a Pediatric Oncology Group pilot study. Cancer 1993; 72(9): 2755–62

    Article  PubMed  CAS  Google Scholar 

  95. Kortmann R-D, Kühl J, Timmermann B, et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT’ 91. Int J Radiat Oncol Biol Phys 2000; 46(2): 269–79

    Article  PubMed  CAS  Google Scholar 

  96. Lampkin BC, Mauer AM, McBride BH. Response to medulloblastoma to vincristine sulfate: a case report. Pediatrics 1967 May 1; 39(5): 761–3

    PubMed  CAS  Google Scholar 

  97. Jackson Jr D, Sethi V, Spurr C, et al. Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 1981; 41: 1466–8

    PubMed  Google Scholar 

  98. Kellie SJ, Barbaric D, Koopmans P, et al. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing. Cancer 2002; 94(6): 1815–20

    Article  PubMed  CAS  Google Scholar 

  99. Packer RJ. Chemotherapy for medulloblastoma/primitive neuroectodermal tumors of the posterior fossa. Ann Neurol 1990; 28: 823–8

    Article  PubMed  CAS  Google Scholar 

  100. Allen JC, Helson L. High-dose cyclophosphamide chemotherapy for recurrent CNS tumors in children. J Neurosurg 1981; 55: 749–56

    Article  PubMed  CAS  Google Scholar 

  101. Moghrabi A, Fuchs H, Brown M, et al. Cyclophosphamide in combination with sargramostim for treatment of recurrent medulloblastoma. Med Pediatr Oncol 1995; 25(3): 190–6

    Article  PubMed  CAS  Google Scholar 

  102. Nicholson HS, Kretschmar CS, Krailo M, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors. Cancer 2007; 110(7): 1542–50

    Article  PubMed  CAS  Google Scholar 

  103. Packer RJ, Sutton LN, Elterman RD, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 1994; 81: 690–8

    Article  PubMed  CAS  Google Scholar 

  104. Allen JC, Walker R, Luks E, et al. Carboplatin and recurrent childhood brain tumors. J Clin Oncol 1987 Mar 1; 5(3): 459–63

    PubMed  CAS  Google Scholar 

  105. Gaynon PS, Ettinger LJ, Baum ES, et al. Carboplatin in childhood brain tumors: a Children’s Cancer Study Group Phase II trial. Cancer 1990; 66(12): 2465–9

    Article  PubMed  CAS  Google Scholar 

  106. Mastrangelo R, Lasorella A, Riccardi R, et al. Carboplatin in childhood medulloblastoma/PNET: feasibility of an in vivo sensitivity test in an “up-front” study. Med Ped Oncol 1995; 24(3): 188–96

    Article  CAS  Google Scholar 

  107. Bergman I, Jakacki RI, Heller G, et al. Treatment of standard risk medulloblastoma with craniospinal irradiation, carboplatin, and vincristine. Med Pediatr Oncol 1997 Dec; 29(6): 563–7

    Article  PubMed  CAS  Google Scholar 

  108. Misset JL, Bleiberg H, Sutherland W, et al. Oxaliplatin clinical activity: a review. Crit Rev Oncol Hematol 2000; 35(2): 75–93

    Article  PubMed  CAS  Google Scholar 

  109. Fouladi M, Blaney SM, Poussaint TY, et al. Phase II study of oxaliplatin in children with recurrent or refractory medulloblastoma, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors. Cancer 2006; 107(9): 2291–7

    Article  PubMed  CAS  Google Scholar 

  110. Fossati-Bellani F, Tesoro-Tess JD, Ballerini E. Medulloblastoma (MBL): evaluation of the effectiveness of pre-radiation (RT) chemotherapy (CT) [abstract]. Med Ped Oncol 1990; 18: 361

    Article  Google Scholar 

  111. Allen JC, Walker R, Rosen G. Preradiation high-dose intravenous methotrexate with leucovorin rescue for untreated primary childhood brain tumors. J Clin Oncol 1988 Apr 1; 6(4): 649–53

    PubMed  CAS  Google Scholar 

  112. Lashford L, Campbell R, Gattamaneni H, et al. An intensive multiagent chemotherapy regimen for brain tumours occurring in very young children. Arch Dis Child 1996 Mar1; 74(3): 219–23

    Article  PubMed  CAS  Google Scholar 

  113. Chi SN, Gardner SL, Levy AS, et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol 2004 Dec 15; 22(24): 4881–7

    Article  PubMed  CAS  Google Scholar 

  114. Mason W, Grovas A, Halpern S, et al. Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J Clin Oncol 1998 Jan 1; 16(1): 210–21

    PubMed  CAS  Google Scholar 

  115. Kadota RP, Stewart CF, Horn M, et al. Topotecan for the treatment of recurrent or progressive central nervous system tumors: a Pediatric Oncology Group phase II study. J Neurooncol 1999; 43(1): 43–7

    Article  PubMed  CAS  Google Scholar 

  116. Blaney SM, Phillips PC, Packer RJ, et al. Phase II evaluation of topotecan for pediatric central nervous system tumors. Cancer 1996; 78(3): 527–31

    Article  PubMed  CAS  Google Scholar 

  117. Strother D, Ashley D, Kellie SJ, et al. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J Clin Oncol 2001 May 15; 19(10): 2696–704

    PubMed  CAS  Google Scholar 

  118. Stewart CF, Iacono LC, Chintagumpala M, et al. Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor. J Clin Oncol 2004 Aug 15; 22(16): 3357–65

    Article  PubMed  CAS  Google Scholar 

  119. Kovnar EH, Kellie SJ, Horowitz ME, et al. Preirradiation cisplatin and etoposide in the treatment of high-risk medulloblastoma and other malignant embryonal tumors of the central nervous system: a phase II study. J Clin Oncol 1990 Feb 1; 8(2): 330–6

    PubMed  CAS  Google Scholar 

  120. Ashley DM, Meier L, Kerby T, et al. Response of recurrent medulloblastoma to low-dose oral etoposide. J Clin Oncol 1996; 14(6): 1922–7

    PubMed  CAS  Google Scholar 

  121. Moghrabi A, Hershon L, Rousseau P, et al. A phase I/II feasibility study of oral etoposide given concurrently with radiotherapy followed with dose-intensive adjuvant chemotherapy for children with newly diagnosed high-risk medulloblastoma COG P9631 [abstract]. Neuro-oncology 2008; 10(3): 476. 13th Annual ISPNO Meeting; 29 Jun–2 Jul 2008; Chicago (IL)

    Google Scholar 

  122. Dupuis-Girod S, Hartmann O, Benhamou E, et al. Will high-dose chemotherapy followed by autologous bone marrow transplantation supplant cranio-spinal irradiation in young children treated for medulloblastoma? J Neuro-Oncol 1996; 27: 87–98

    Article  CAS  Google Scholar 

  123. Mahoney Jr DH, Strother D, Camitta B, et al. High-dose melphalan and cyclophosphamide with autologous bone marrow rescue for recurrent/progressive malignant brain tumors in children: a pilot Pediatric Oncology Group study. J Clin Oncol 1996; 14: 382–8

    PubMed  CAS  Google Scholar 

  124. Graham ML, Herndon 2nd JE, Casey JR, et al. High-dose chemotherapy with autologous stem-cell rescue in patients with recurrent and high-risk pediatric brain tumors. J Clin Oncol 1997; 15(5): 1814–23

    PubMed  CAS  Google Scholar 

  125. Guruangan S, Dunkel IJ, Goldman S, et al. Myeloablative chemotherapy with autologous bone marrow rescue in young children with recurrent malignant brain tumors. J Clin Oncol 1998; 16: 2486–93

    PubMed  CAS  Google Scholar 

  126. Dunkel IJ, Boyett JM, Yates A, et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem-cell rescue for patients with recurrent medulloblastoma. J Clin Oncol 1998; 16(1): 222–8

    PubMed  CAS  Google Scholar 

  127. Grill J, Renaux VK, Bulteau C, et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int J Radiat Oncol Biol Phys 1999; 45(1): 137–45

    Article  PubMed  CAS  Google Scholar 

  128. Packer RJ, Boyett JM, Janss AJ, et al. Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol 2001; 19: 480–7

    PubMed  CAS  Google Scholar 

  129. Paulino AC. Hypothyroidism in children with medulloblastoma: a comparison of 3600 and 2340 cGy cranio-spinal radiotherapy. Int J Radiat Oncol Biol Phys 2002; 53(3): 543–7

    Article  PubMed  Google Scholar 

  130. Gurney JG, Ness KK, Stovall M, et al. Final height and body mass index among adult survivors of childhood brain cancer: Childhood Cancer Survivor Study. J Clin Endocrinol Metab 2003 Oct 1; 88(10): 4731–9

    Article  PubMed  CAS  Google Scholar 

  131. Huang E, Teh BS, Strother DR, et al. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 2002; 52(3): 599–605

    Article  PubMed  Google Scholar 

  132. Fukunaga-Johnson N, Sandler HM, Marsh R, et al. The use of 3D conformal radiotherapy (3D CRT) to spare the cochlea in patients with medulloblastoma. Int J Radiat Oncol Biol Phys 1998; 41(1): 77–82

    Article  PubMed  CAS  Google Scholar 

  133. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 2005; 23(34): 8588–96

    Article  PubMed  Google Scholar 

  134. Lamont JM, McManamy CS, Pearson AD, et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 2004 Aug 15; 10(16): 5482–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Klesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klesse, L.J., Bowers, D.C. Childhood Medulloblastoma. CNS Drugs 24, 285–301 (2010). https://doi.org/10.2165/11530140-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11530140-000000000-00000

Keywords

Navigation