Skip to main content
Log in

Pharmacological Properties of Antifungal Drugs with a Focus on Anidulafungin

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Drug classes for the treatment of invasive fungal infections include the polyenes, the triazoles and the echinocandins. Older agents such as the commonly used amphotericin B have a number of limitations, including toxicity and requirements for monitoring during treatment. These limitations led to the development of a number of new formulations of the agent, with the aim of reducing toxicity while maintaining or improving efficacy. Regarding other drug classes, some of the newer agents, such as the echinocandins, have more favourable pharmacokinetic/pharmacodynamic (PK/PD) profiles, with less toxicity and no need for monitoring. The newest echinocandin, anidulafungin, offers significant promise for antifungal infections, and has a number of favourable features, including a lack of known drug interactions and no need for dosage adjustment for any degree of renal or hepatic failure. From a pharmacological point of view, knowledge of both PK and PD characteristics of antifungal drugs is mandatory for evaluating the role of the different agents in the clinical setting. Overall, in the search for safer and more efficacious antifungal agents, PK/PD investigations have been valuable for defining optimal antifungal dosing regimens and developing in vitro susceptibility breakpoints. This article reviews the PK/PD properties of the polyenes, the triazoles and the echinocandins, with a focus on anidulafungin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III
Table IV
Table V
Fig. 2
Table VI
Table VII
Table VIII
Table IX

Similar content being viewed by others

References

  1. Lanternier F, Lortholary O. Liposomal amphotericin B: what is its role in 2008? Clin Microbiol Infect 2008 May; 14 Suppl. 4: 71–83

    Article  PubMed  CAS  Google Scholar 

  2. Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 2008 May; 14 Suppl. 4: 25–36

    Article  PubMed  CAS  Google Scholar 

  3. Ellis M. New dosing strategies for liposomal amphotericin B in high-risk patients. Clin Microbiol Infect 2008 May; 14 Suppl. 4: 55–64

    Article  Google Scholar 

  4. Lewis RE. Pharmacodynamic implications for use of anti-fungal agents. Curr Opin Pharmacol 2007 Oct; 7(5): 491–7

    Article  PubMed  CAS  Google Scholar 

  5. Andes D. Pharmacokinetics and pharmacodynamics of anti-fungals. Infect Dis Clin North Am 2006 Sep; 20(3): 679–97

    Article  PubMed  Google Scholar 

  6. Di Bonaventura G, Spedicato I, Picciani C, et al. In vitro pharmacodynamic characteristics of amphotericin B, caspofungin, fluconazole, and voriconazole against bloodstream isolates of infrequent Candida species from patients with hematologic malignancies. Antimicrob Agents Chemother 2004 Nov; 48(11): 4453–6

    Article  PubMed  Google Scholar 

  7. Venisse N, Grégoire N, Marliat M, et al. Mechanism-based pharmacokinetic-pharmacodynamic models of in vitro fungistatic and fungicidal effects against Candida albicans. Antimicrob Agents Chemother 2008 Mar; 52(3): 937–43

    Article  PubMed  CAS  Google Scholar 

  8. Andes D, Safdar N, Marchillo K, et al. Pharmacokineticpharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Antimicrob Agents Chemother 2006 Feb; 50(2): 674–84

    Article  PubMed  CAS  Google Scholar 

  9. Wiederhold NP, Tam VH, Chi J, et al. Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2006 Feb; 50(2): 469–73

    Article  PubMed  CAS  Google Scholar 

  10. Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol 2005 Aug; 68(2): 151–62

    Article  PubMed  CAS  Google Scholar 

  11. Bellmann R. Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2007 Jan; 2(1): 37–58

    Article  PubMed  CAS  Google Scholar 

  12. Khoo SH, Bond J, Denning DW. Administering amphotericin B: a practical approach. J Antimicrob Chemother 1994 Feb; 33(2): 203–13

    Article  PubMed  CAS  Google Scholar 

  13. Storm G, van Etten E. Biopharmaceutical aspects of lipid formulations of amphotericin B. Eur J Clin Microbiol Infect Dis 1997 Jan; 16(1): 64–73

    Article  PubMed  CAS  Google Scholar 

  14. Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother 1997 Oct; 41(10): 2201–8

    PubMed  CAS  Google Scholar 

  15. Bekersky I, Fielding RM, Dressler DE, et al. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 2002 Mar; 46(3): 828–33

    Article  PubMed  CAS  Google Scholar 

  16. Janknegt R, de Marie S, Bakker-Woudenberg IA, et al. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 1992 Oct; 23(4): 279–91

    Article  CAS  Google Scholar 

  17. Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 1996 May; 22 Suppl. 2: S133–44

    Article  PubMed  CAS  Google Scholar 

  18. Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 1998; 44: 343–500

    Article  PubMed  CAS  Google Scholar 

  19. Hong Y, Shaw PJ, Tattam BN, et al. Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol 2007 Feb; 63(2): 165–72

    Article  PubMed  CAS  Google Scholar 

  20. Worth LJ, Blyth CC, Booth DL, et al. Optimizing antifungal drug dosing and monitoring to avoid toxicity and improve outcomes in patients with haematological disorders. Intern Med J 2008 Jun; 38(6b): 521–37

    Article  PubMed  CAS  Google Scholar 

  21. Goodwin ML, Drew RH. Antifungal serum concentration monitoring: an update. J Antimicrob Chemother 2008 Jan; 61(1): 17–25

    Article  PubMed  CAS  Google Scholar 

  22. Smith J, Andes DA. Therapeutic drug monitoring of anti-fungals: pharmacokinetic and pharmacodynamic considerations. Ther Drug Monit 2008; 30: 167–72

    Article  PubMed  CAS  Google Scholar 

  23. Aperis G, Mylonakis E. Newer triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations. Expert Opin Investig Drugs 2006; 15(6): 579–602

    Article  PubMed  CAS  Google Scholar 

  24. Maertens JA. History of the development of azole derivatives. Clin Microbiol Infection 2004; 10: 1–10

    Article  CAS  Google Scholar 

  25. Hossain MA, Ghannoum MA. New investigational anti-fungal agents for treating invasive fungal infections. Expert Opin Investig Drugs 2000; 9(8): 1797–813

    Article  PubMed  CAS  Google Scholar 

  26. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999; 12(1): 40–79

    PubMed  CAS  Google Scholar 

  27. Lamb D, Kelly D, Kelly S. Molecular aspects of azole antifungal action and resistance. Drug Resist Updat 1999; 2(6): 390–402

    Article  PubMed  CAS  Google Scholar 

  28. Lipp HP. Antifungal agents: clinical pharmacokinetics and drug interactions. Mycoses 2008; 51 Suppl. 1: 7–18

    Article  Google Scholar 

  29. De Sarro A, La Camera E, Fera MT. New and investigational triazole agents for the treatment of invasive fungal infections. J Chemother 2008; 20(6): 661–71

    PubMed  Google Scholar 

  30. Donnelly JP, De Pauw BE. Voriconazole: a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infection 2004; 10(1): 107–17

    Article  CAS  Google Scholar 

  31. Wagner C, Graninger W, Presterl E, et al. The echinocandins: comparison of their pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology 2006; 78(4): 161–77

    Article  PubMed  CAS  Google Scholar 

  32. Cappelletty D, Eiselstein-McKitrick K. The echinocandins. Pharmacotherapy 2007 Mar; 27(3): 369–88

    Article  PubMed  CAS  Google Scholar 

  33. Estes KE, Penzak SR, Calis KA, et al. Pharmacology and antifungal properties of anidulafungin, a new echinocandin. Pharmacotherapy 2009 Jan; 29(1): 17–30

    Article  PubMed  CAS  Google Scholar 

  34. Debono M, Turner WW, LaGrandeur L, et al. Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structure-activity studies of the lipophilic and geometric parameters of polyarylated acyl analogs of ECB. J Med Chem 1995 Aug 18; 38(17): 3271–81

    Article  PubMed  CAS  Google Scholar 

  35. Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 2002 Jun; 46(6): 1857–69

    Article  PubMed  CAS  Google Scholar 

  36. Ernst EJ, Roling EE, Petzold CR, et al. In vitro activity of micafungin (FK-463) against Candida sp: microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother 2002 Dec; 46(12): 3846–53

    Article  PubMed  CAS  Google Scholar 

  37. Petraitiene R, Petraitis V, Groll AH, et al. Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother 1999 Sep; 43(9): 2148–55

    PubMed  CAS  Google Scholar 

  38. Ernst EJ, Klepser ME, Pfaller MA. Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 2000 Apr; 44(4): 1108–11

    Article  PubMed  CAS  Google Scholar 

  39. Andes D, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 2008 Feb; 52(2): 539–50

    Article  PubMed  CAS  Google Scholar 

  40. Wiederhold NP, Kontoyiannis DP, Chi J, et al. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis 2004 Oct 15; 190(8): 1464–71

    Article  PubMed  CAS  Google Scholar 

  41. Dowell JA, Knebel W, Ludden T, et al. Population pharmacokinetic analysis of anidulafungin, an echinocandin antifungal. J Clin Pharmacol 2004 Jun; 44(6): 590–8

    Article  PubMed  CAS  Google Scholar 

  42. Hiemenz J, Cagnoni P, Simpson D, et al. Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant. Antimicrob Agents Chemother 2005 Apr; 49(4): 1331–6

    Article  PubMed  CAS  Google Scholar 

  43. Stone JA, Holland SD, Wickersham PJ, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother 2002 Mar; 46(3): 739–45

    Article  PubMed  CAS  Google Scholar 

  44. Hebert MF, Smith HE, Marbury TC, et al. Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol 2005 Oct; 45(10): 1145–52

    Article  PubMed  CAS  Google Scholar 

  45. Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag 2007 Mar; 3(1): 71–97

    Article  PubMed  CAS  Google Scholar 

  46. Gumbo T. Impact of pharmacodynamics and pharmacokinetics on echinocandin dosing strategies. Curr Opin Infect Dis 2007; 20: 587–91

    Article  PubMed  CAS  Google Scholar 

  47. Dowell JA, Stogniew M, Krause D, et al. Anidulafungin does not require dosage adjustment in subjects with varying degrees of hepatic or renal impairment. J Clin Pharmacol 2007 Apr; 47(4): 461–70

    Article  PubMed  CAS  Google Scholar 

  48. Damle BD, Dowell JA, Walsky RL, et al. In vitro and in vivo studies to characterize the clearance mechanism and potential cytochrome P450 interactions of anidulafungin. Antimicrob Agents Chemother 2009 Mar; 53(3): 1149–56

    Article  PubMed  CAS  Google Scholar 

  49. Denning DW. Echinocandin antifungal drugs. Lancet 2003 Oct 4; 362(9390): 1142–51

    Article  PubMed  CAS  Google Scholar 

  50. Dowell JA, Stogniew M, Krause D, et al. Assessment of the safety and pharmacokinetics of anidulafungin when administered with cyclosporine. J Clin Pharmacol 2005 Feb; 45(2): 227–33

    Article  PubMed  CAS  Google Scholar 

  51. Benjamin DK, Driscoll T, Seibel NL, et al. Safety and pharmacokinetics of intravenous anidulafungin in children with neutropenia at high risk for invasive fungal infections. Antimicrob Agents Chemother 2006 Feb; 50(2): 632–8

    Article  PubMed  CAS  Google Scholar 

  52. Joseph JM, Kim R, Reboli AC. Anidulafungin: a drug evaluation of a new echinocandin. Expert Opin Pharmacother 2008 Sep; 9(13): 2339–48

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Marie Cheeseman of Wolters Kluwer Pharma Solutions who provided assistance with English language editing. This assistance was funded by Pfizer.

The authors have no conflicts of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Novelli MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzei, T., Novelli, A. Pharmacological Properties of Antifungal Drugs with a Focus on Anidulafungin. Drugs 69 (Suppl 1), 79–90 (2009). https://doi.org/10.2165/11315550-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11315550-000000000-00000

Keywords

Navigation