Skip to main content
Log in

The Multicentre Atorvastatin Plaque Stabilisation (MAPS) Study

Proposed Rationale and Study Design

  • Study Design and Research Projects
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Background: Inflammatory mechanisms are thought to play a key role in the development of atherosclerosis and unstable plaque. In the past, numerous studies have reported that the statins have an antiinflammatory and anti-atherosclerotic effect unrelated to lipid-lowering. However, it is still difficult to estimate the contribution of the specific cholesterol-independent effects of statins in counteracting the atherosclerotic process and its sequelae.

Aim: To establish whether a short-term (3-month) treatment with atorvastatin at high versus low dose leads to changes in carotid plaque structure and biology in terms of cellular/extracellular composition, markers of inflammation, cell adhesion, and thrombosis. For comparison, the effect of another cholesterol-lowering treatment will also be evaluated.

Study design: A randomised, multicentre, double-bind, parallel group study will be conducted involving 225 patients. The patients will have hypercholesterolaemia (serum total cholesterol 225–295 mg/dL) with carotid stenosis ≥70% and be planning to undergo an endarterectomy procedure. During the 3 months prior to the procedure, the patients will be randomly divided into three groups. Each group received atorvastatin 10 mg/day, atorvastatin 80 mg/day, or cholestyramine 8 g/day plus sitosterol 2.5 g/day, respectively.

Expected results: The effectiveness of atorvastatin versus control medication in inducing a favourable plaque remodelling (stabilisation), a reduced level of inflammation (local and systemic), and the effectiveness of a high versus low dose of atorvastatin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Wilson PW, Garrison RJ, Abbott RD, et al. Factors associated with lipoprotein cholesterol levels: the Framingham study. Arteriosclerosis 1983; 3: 273–81

    Article  PubMed  CAS  Google Scholar 

  2. Farmer JA, Gotto AM. Risk factors for coronary artery disease. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. 4th ed. Philadelphia (PA): Saunders 1992: 1125–60

  3. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  4. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels: Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335: 1001–9

    Article  PubMed  CAS  Google Scholar 

  5. LIPID Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349–57

    Google Scholar 

  6. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9

    Google Scholar 

  7. MRC/BHF. Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7–22

    Google Scholar 

  8. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7

    Article  PubMed  CAS  Google Scholar 

  9. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. JAMA 1998; 279: 1615–22

    Article  PubMed  CAS  Google Scholar 

  10. Gould AL, Rossouw JE, Santanello NC, et al. Cholesterol reduction yields clinical benefit: impact of statin trials. Circulation 1998; 97: 946–52

    Article  PubMed  CAS  Google Scholar 

  11. Grundy SM. Statin trials and goals of cholesterol-lowering therapy. Circulation 1998; 97: 1436–9

    Article  PubMed  CAS  Google Scholar 

  12. Farnier M, Davignon J. Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 1998; 82: 3J–10J

    Article  PubMed  CAS  Google Scholar 

  13. Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996; 348: 1079–82

    Article  PubMed  CAS  Google Scholar 

  14. White MC. Pharmacological effects of HMG CoA Reductaase Inhibitors other than lipoprotein modulation. J Clin Pharmacol 1999; 39: 111–8

    Article  PubMed  CAS  Google Scholar 

  15. Koh KK. Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc Res 2000; 47: 648–57

    Article  PubMed  CAS  Google Scholar 

  16. Ridker PM, Rifai N, Lowenthal SP. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 2001; 103: 1191–3

    Article  PubMed  CAS  Google Scholar 

  17. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  18. Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247: 349–58

    Article  PubMed  CAS  Google Scholar 

  19. Palinski W. New evidence for beneficial effects of statins unrelated to lipid lowering. Arterioscler Thromb Vasc Biol 2001;: 3–5

    Article  PubMed  CAS  Google Scholar 

  20. Sparrow CP, Burton CA, Hernandez M, et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 2001; 21: 115–21

    Article  PubMed  CAS  Google Scholar 

  21. Axel DI, Riessen R, Runge H, et al. Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol 2000; 35: 619–29

    Article  PubMed  CAS  Google Scholar 

  22. Guijarro C, Blanco-Colio LM, Ortego M, et al. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 1998; 83: 490–500

    Article  PubMed  CAS  Google Scholar 

  23. Colli S, Eligini S, Lalli M, et al. Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol 1997; 17: 265–72

    Article  PubMed  CAS  Google Scholar 

  24. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 1998; 18: 1671–8

    Article  PubMed  CAS  Google Scholar 

  25. Essig M, Nguyen G, Prie D, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells: role of geranylgeranylation and Rho proteins. Circ Res 1998; 83: 683–90

    Article  PubMed  CAS  Google Scholar 

  26. Zambon A, Hokanson JE, Brown BG, et al. Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density. Circulation 1999; 99: 1959–64

    Article  PubMed  CAS  Google Scholar 

  27. Zambon A, Deeb SS, Hokanson JE, et al. Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL2 cholesterol. Arterioscler Thromb Vasc Biol 1998; 18: 1723–9

    Article  PubMed  CAS  Google Scholar 

  28. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis: the Regression Growth Evaluation Statin Study Group. N Engl J Med 1998; 338: 86–93

    Article  PubMed  CAS  Google Scholar 

  29. Zambon A, Brown BG, Deeb SS, et al. Hepatic lipase as a focal point for the development and treatment of coronary artery disease. J Investig Med 2001; 49: 112–8

    Article  PubMed  CAS  Google Scholar 

  30. Faggin E, Zambon A, Puato M, et al. Association between the —514 C—>T polymorphism of the hepatic lipase gene promoter and unstable carotid plaque in patients with severe carotid artery stenosis. J Am Coll Cardiol 2002; 40: 1059–66

    Article  PubMed  CAS  Google Scholar 

  31. Yoshida M, Sawada T, Ishii H, et al. HMG-Coa reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of rho gtpase-dependent mechanism. Arterioscler Thromb Vasc Biol 2001; 21: 1165–71

    Article  PubMed  CAS  Google Scholar 

  32. Sumi D, Hayashi T, Thakur NK, et al. A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects-the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Atherosclerosis 2001; 155: 347–57

    Article  PubMed  CAS  Google Scholar 

  33. Aikawa M, Rabkin E, Voglic SJ, et al. Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res 1998; 83: 1015–26

    Article  PubMed  CAS  Google Scholar 

  34. Knapp AC, Huang J, Starling G, et al. Inhibitors of HMG-CoA reductase sensitize human smooth muscle cells to Fas-ligand and cytokine-induced cell death. Atherosclerosis 2000; 152: 217–27

    Article  PubMed  CAS  Google Scholar 

  35. Yasunari K, Maeda K, Minami M, et al. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress. Arterioscler Thromb Vasc Biol 2001; 21: 937–42

    Article  PubMed  CAS  Google Scholar 

  36. Pauletto P, Puato M, Faggin E, et al. Low-dose cerivastatin inhibits spontaneous atherogenesis in heterozygous watanabe hyper lipidemic rabbits. J Vasc Res 2000; 37: 189–94

    Article  PubMed  CAS  Google Scholar 

  37. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844–50

    Article  PubMed  CAS  Google Scholar 

  38. Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001; 103: 276–83

    Article  PubMed  CAS  Google Scholar 

  39. Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 2001; 107: 1423–32

    Article  PubMed  CAS  Google Scholar 

  40. Sukhova GK, Williams JK, Libby P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol 2002; 22: 1452–8

    Article  PubMed  CAS  Google Scholar 

  41. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103: 926–33

    Article  PubMed  CAS  Google Scholar 

  42. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103: 1813–8

    Article  PubMed  CAS  Google Scholar 

  43. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 1994; 331: 417–24

    Article  PubMed  CAS  Google Scholar 

  44. Morrow DA, Rifai N, Antman EM, et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes. A TIMI 11A substudy: thrombolysis in myocardial infarction. J Am Coll Cardiol 1998; 31: 1460–5

    Article  PubMed  CAS  Google Scholar 

  45. Toss H, Lindahl B, Siegbahn A, et al. Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. FRISC Study Group: Fragmin during Instability in Coronary Artery Disease. Circulation 1997; 96: 4204–10

    Article  PubMed  CAS  Google Scholar 

  46. Lindahl B, Toss H, Siegbahn A, et al. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group: Fragmin during Instability in Coronary Artery Disease. N Engl J Med 2000; 343: 1139–47

    Article  PubMed  CAS  Google Scholar 

  47. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–43

    Article  PubMed  CAS  Google Scholar 

  48. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1998; 98: 839–44

    Article  PubMed  CAS  Google Scholar 

  49. Albert MA, Danielson E, Rifai N, et al. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001; 286: 64–70

    Article  PubMed  CAS  Google Scholar 

  50. Strandberg TE, Vanhanen H, Tikkanen MJ. Effect of statins on C-reactive protein in patients with coronary artery disease. Lancet 1999; 353: 118–9

    Article  PubMed  CAS  Google Scholar 

  51. Jialal I, Stein D, Balis D, et al. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation 2001; 103: 1933–5

    Article  PubMed  CAS  Google Scholar 

  52. Romano M, Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients: role of nitric oxide. J Investig Med 2000; 48: 183–9

    PubMed  CAS  Google Scholar 

  53. Holm T, Andreassen AK, Ueland T, et al. Effect of pravastatin on plasma markers of inflammation and peripheral endothelial function in male heart transplant recipients. Am J Cardiol 2001; 87: 815–8, A9

    Article  PubMed  CAS  Google Scholar 

  54. Di Garbo V, Bono M, Di Raimondo D, et al. Non lipid, dose-dependent effects of pravastatin treatment on hemostatic system and inflammatory response. Eur J Clin Pharmacol 2000; 56: 277–84

    Article  PubMed  Google Scholar 

  55. Blann AD, Gurney D, Hughes E, et al. Influence of pravastatin on lipoproteins, and on endothelial, platelet, and inflammatory markers in subjects with peripheral artery disease. Am J Cardiol 2001; 88: A7-8, 89–92

    Article  CAS  Google Scholar 

  56. Barnett HJ, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 1998; 339: 1415–25

    Article  PubMed  CAS  Google Scholar 

  57. Chung BH, Segrest JP, Ray MJ, et al. Single vertical spin density gradient ultracentrifugation. Methods Enzymol 1986; 128: 181–209

    Article  PubMed  CAS  Google Scholar 

  58. Puato M, Faggin E, Rattazzi M, et al. Ultrasound-based qualitative analysis of cellular composition of initial atherosclerotic lesions. The Study Group on “Arterial Wall Structure” of the Italian Society of Arterial Hypertension [abstract 111859]. American Heart Association Scientific Sessions; 2001, Anaheim (CA)

    Google Scholar 

  59. Pauletto P, Puato M, Faggin E, et al. Specific cellular features of atheroma associated with development of neointima after carotid endarterectomy: the carotid atherosclerosis and restenosis study. Circulation 2000; 102: 771–8

    Article  PubMed  CAS  Google Scholar 

  60. Jakobsson PJ, Thoren S, Morgenstern R, et al. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 1999; 96: 7220–5

    Article  PubMed  CAS  Google Scholar 

  61. Herron GS, Werb Z, Dwyer K, et al. Secretion of metalloproteinases by stimulated capillary endothelial cells: I. production of procollagenase and prostromelysin exceeds expression of proteolytic activity. J Biol Chem 1986; 261: 2810–3

    PubMed  CAS  Google Scholar 

  62. Pauletto P, Palatini P, Da Ros S, et al. Factors underlying the increase in carotid intima-media thickness in borderline hypertensives. Arterioscler Thromb Vasc Biol 1999; 19: 1231–7

    Article  PubMed  CAS  Google Scholar 

  63. Pincus J. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998; 82: 406–7

    PubMed  CAS  Google Scholar 

  64. Andrews TC, Ballantyne CM, Hsia JA, et al. Achieving and maintaining National Cholesterol Education Program low-density lipoprotein cholesterol goals with five statins. Am J Med 2001; 111: 185–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pauletto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauletto, P., Ferri, C., Volpe, M. et al. The Multicentre Atorvastatin Plaque Stabilisation (MAPS) Study. High Blood Press Cardiovasc Prev 10, 11–18 (2003). https://doi.org/10.2165/00151642-200310010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151642-200310010-00004

Keywords

Navigation