Skip to main content
Log in

Variations in Amoxicillin Pharmacokinetic/Pharmacodynamic Parameters May Explain Treatment Failures in Acute Otitis Media

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Pharmacokinetic/pharmacodynamic (PK/PD) modeling and Monte Carlo simulations suggest that amoxicillin should rarely fail as therapy for Streptococcus pneumoniae and Haemophilus influenzae acute otitis media (AOM) infections except when the S. pneumoniae are highly penicillin resistant or the H. influenzae are β-lactamase producing. However, important and not infrequent exceptions to this expectation have been described. The objective of this review was to define the biologic variations in amoxicillin PK/PD parameters for the treatment of AOM in children and assess whether these variations could explain why the commonly employed amoxicillin PK/PD model is imperfect in predicting outcome for every patient in this clinical setting. To this end, a literature search of MEDLINE (1966–2006) and EMBASE (1974–2006) was conducted to identify studies that evaluated ampicillin or amoxicillin intestinal absorption, serum concentrations, and/or middle ear fluid (MEF) concentrations. Analysis of studies identified for review showed that the intestinal bioavailability of amoxicillin depends on passive diffusion and a saturable ‘pump’ mechanism that produces variable serum concentrations of the antibacterial agent. Indeed, substantial differences from patient to patient in serum (5- to 30-fold) and MEF (up to 20-fold) concentrations of amoxicillin occur following oral administration, and 15–35% of children have no detectable amoxicillin in MEF. These findings suggest that variability in PK/PD parameters may impact amoxicillin concentrations in serum and MEF, possibly explaining some AOM treatment failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 1996; 15: 255–9

    Article  PubMed  CAS  Google Scholar 

  2. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1–12

    Article  PubMed  CAS  Google Scholar 

  3. Blumer JL. Pharmacokinetics and pharmacodynamics of new and old antimicrobial agents for acute otitis media. Pediatr Infect Dis J 1998; 17: 1070–5

    Article  PubMed  CAS  Google Scholar 

  4. Rubino CM, Bradley JS. Optimizing therapy with antibacterial agents: use of pharmacokinetic-pharmacodynamic principles in pediatrics. Pediatr Drugs 2007; 9: 361–9

    Article  Google Scholar 

  5. American Academy of Pediatrics, American Academy of Family Physicians. Diagnosis and management of acute otitis media (clinical practice guideline). Pediatrics 2004; 113: 1451–65

    Article  Google Scholar 

  6. Lister PD, Pong A, Chartrand SA, et al. Rationale behind high-dose amoxicillin therapy for acute otitis media due to penicillin-nonsusceptible pneumococci: support from in vitro pharmacodynamic studies. Antimicrob Agents Chemother 1997; 41: 1926–32

    PubMed  CAS  Google Scholar 

  7. MacGowan AP, Noel AR, Rogers CA, et al. Antibacterial effects of amoxicillinclavulanate against Streptococcus pneumoniae and Haemophilus influenzae strains for which MICs are high, in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 2004; 48: 2599–603

    Article  PubMed  CAS  Google Scholar 

  8. Woodnutt G, Berry V. Efficacy of high-dose amoxicillin-clavulanate against experimental respiratory tract infections caused by strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43: 35–40

    PubMed  CAS  Google Scholar 

  9. Bradley JS, Dudley MN, Drusano GL. Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatr Infect Dis J 2003; 22: 982–92

    Article  PubMed  Google Scholar 

  10. Sezaki H, Kimura T. Carrier-mediated transport in drug absorption. In: Breimer DD, Speiser P, editors. Topics in pharmaceutical sciences. Amsterdam: Elsevier Science Publishers BV, 1983: 133–42

    Google Scholar 

  11. Legen I, Kracun M, Salobir M, et al. The evaluation of pharmaceutically acceptable excipients as permeation enhancers for amoxicillin. Int J Pharm 2006; 308: 84–9

    Article  PubMed  CAS  Google Scholar 

  12. Sjövall J, Alván G, Westerlund D. Dose-dependent absorption of amoxycillin and bacampicillin. Clin Pharm Ther 1985; 38: 241–50

    Article  Google Scholar 

  13. Navarro AS. New formulations of amoxicillin/clavulanic acid: a pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet 2005; 44: 1097–115

    Article  Google Scholar 

  14. Spyker DA, Rugloski RJ, Vann RL, et al. Pharmacokinetics of amoxicillin: dose dependence after intravenous, oral, and intramuscular administration. Antimicrob Agents Chemother 1977; 11: 132–41

    Article  PubMed  CAS  Google Scholar 

  15. Sjövall J, Magni L, Bergan T. Pharmacokinetics of bacampicillin compared to those of ampicillin, pivampicillin and amoxycillin. Antimicrob Agents Chemother 1978; 13: 90–6

    Article  PubMed  Google Scholar 

  16. Barr WH, Zola EM, Candler EL, et al. Differential absorption of amoxicillin from the human small and large intestine. Clin Pharm Ther 1994; 56: 279–85

    Article  CAS  Google Scholar 

  17. Fonseca W, Hoppu K, Rey LC, et al. Comparing pharmacokinetics of amoxicillin given twice or three times per day to children older than 3 months with pneumonia. Antimicrob Agents Chemother 2003; 47: 997–1001

    Article  PubMed  CAS  Google Scholar 

  18. Barr WH. The pharmacokinetics of the absorption and disposition of ceftibuten. Rev Contemp Pharmacother 1996; 7: 149–55

    CAS  Google Scholar 

  19. McKinnon PS, Davis SL. Pharmacokinetic and pharmacodynamic issues in the treatment of bacterial infectious diseases. Eur J Clin Microbiol Infect Dis 2004; 23: 271–88

    Article  PubMed  CAS  Google Scholar 

  20. Ginsburg CM, McCracken GH, Nelson JD. Pharmacology of oral antibiotics used for treatment of otitis media and tonsillopharyngitis in infants and children. Ann Otol Rhinol Laryngol Suppl 1981 May–Jun; 90: 37–43

    PubMed  CAS  Google Scholar 

  21. Nelson JD, Ginsburg CM, McLeland O, et al. Concentrations of antimicrobial agents in middle ear fluid, saliva and tears. Int J Pediatr Otorhinolaryngol 1981; 3: 327–34

    Article  PubMed  CAS  Google Scholar 

  22. Seikel K, Shelton S, McCracken Jr GH. Middle ear fluid concentrations of amoxicillin after large dosages in children with acute otitis media. Pediatr Infect Dis J 1997; 16: 710–1

    Article  PubMed  CAS  Google Scholar 

  23. Krause PJ, Owens NJ, Nightingale CH, et al. Penetration of amoxicillin, cefaclor erythromycin-sulfisoxazole, and trimethoprim-sulfamethoxazole into middle ear fluid of patients with chronic serous otitis media. J Infect Dis 1982; 145: 815–21

    Article  PubMed  CAS  Google Scholar 

  24. Canafax DM, Yuan Z, Chonmaitree T, et al. Amoxicillin middle ear fluid penetration and pharmacokinetics in children with acute otitis media. Pediatr Infect Dis J 1998; 17: 149–56

    Article  PubMed  CAS  Google Scholar 

  25. Harrison CJ, Welch DF. Middle ear effusion amoxicillin concentrations in acute otitis media. Pediatr Infect Dis J 1998; 17: 657–8

    Article  PubMed  CAS  Google Scholar 

  26. Scaglione F, Caronzolo D, Pintucci JP, et al. Measurement of cefaclor and amoxicillin-clavulanic acid levels in middle ear fluid in patients with acute otitis media. Antimicrob Agents Chemother 2003; 47: 2987–9

    Article  PubMed  CAS  Google Scholar 

  27. Dowell SF, Butler JC, Geibink GS, et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance. A report from the Drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 1999; 18: 1–9

    CAS  Google Scholar 

  28. Gordon RC, Regamey C, Kirby WM. Comparative clinical pharmacology of amoxicillin and ampicillin administered orally. Antimicrob Agents Chemother 1972; 1: 504–7

    Article  PubMed  CAS  Google Scholar 

  29. Kirby WM, Gordon RC, Regamey C. The pharmacology of orally administered amoxicillin and ampicillin. J Infect Dis Suppl 1974; 129: S154–5

    Article  PubMed  Google Scholar 

  30. Verbist L. Triple crossover study on absorption and excretion of ampicillin, pivampicillin and amoxicillin. Antimicrob Agents Chemother 1974; 6: 588–93

    Article  PubMed  CAS  Google Scholar 

  31. Little PJ, Peddie BA. Absorption and excretion of amoxycillin and pivampicillin, two new semisynthetic penicillins. Med J Aust 1974; 2: 598–600

    PubMed  CAS  Google Scholar 

  32. Vitti TG, Gurwith MJ, Ronald AR. Pharmacologic studies of amoxicillin in nonfasting adults. J Infect Dis Suppl 1974; 129: S149–53

    Article  PubMed  Google Scholar 

  33. Welling PG, Huang H, Koch PA, et al. Bioavailability of ampicillin and amoxicillin in fasted and nonfasted subjects. J Pharm Sci 1977; 66: 549–52

    Article  PubMed  CAS  Google Scholar 

  34. Eshelman FN, Spyker DA. Pharmacokinetics of amoxicillin and ampicillin: crossover study of the effect of food. Antimicrob Agents Chemother 1978; 14: 539–43

    Article  PubMed  CAS  Google Scholar 

  35. Vree TB, Dammers E, Exler PS. Identical pattern of highly variable absorption of clavulanic acid from four different oral formulations of co-amoxclav in healthy subjects. J Antimicrob Chemother 2003; 51: 373–8

    Article  PubMed  CAS  Google Scholar 

  36. Chulavatnatol S, Charles BG. Determination of dose-dependent absorption of amoxicillin from urinary excretion data in healthy subjects. Br J Clin Pharmacol 1994; 38: 274–7

    Article  PubMed  CAS  Google Scholar 

  37. Saitoh H, Fujisaki H, Aungst BJ, et al. Restricted intestinal absorption of some beta-lactam antibiotics by an energy-dependent efflux system in rat intestine. Pharm Res 1997; 14: 645–9

    Article  PubMed  CAS  Google Scholar 

  38. Bourdet DL, Thakker DR. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and p-glycoprotein. Pharm Res 2006; 23: 1165–77

    Article  PubMed  CAS  Google Scholar 

  39. Sala-Rabanal M, Loo DD, Hirazama BA, et al. Molecular interactions between dipeptides, drugs and the human intestinal H+-oligopeptide co-transporter hPEPT 1. JPhysiol 2006; 574: 149–66

    Article  CAS  Google Scholar 

  40. Ganapathy ME, Bradsch M, Prasad PD, et al. Differential recognition of betalactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 1995; 270: 25672–7

    Article  PubMed  CAS  Google Scholar 

  41. Bretschneider B, Brandsch M, Neubert R. Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+-peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 1999; 16: 55–61

    Article  PubMed  CAS  Google Scholar 

  42. Pichichero ME. Pathogen shifts and changing cure rates for otitis media and tonsillopharyngitis. Clin Pediatr 2006; 45: 493–502

    Article  Google Scholar 

  43. Jacobs MR. Streptococcus pneumoniae: epidemiology and patterns of resistance. Am J Med 2004; 117Suppl. 3A: 3–15S

    Google Scholar 

  44. Kosowska K, Jacobs MR, Bajaksouzian S, et al. Alternations of penicillin-binding proteins 1A, 2X, and 2B in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother 2004; 48: 4020–2

    Article  PubMed  CAS  Google Scholar 

  45. Schrag SJ, McGee L, Whitney CG, et al. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob Agents Chemother 2004; 48: 3016–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Dr Reed has received grants and honoraria from, and has served as a consultant to, public and private entities, including pharmaceutical manufacturers, which have financial interests in drug discovery and drug development for the treatment of otitis media. Dr Pichichero has no conflicts of interest that are directly relevant to the content of this review. Dr Pichichero had full access to all the data in the review and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Pichichero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichichero, M.E., Reed, M.D. Variations in Amoxicillin Pharmacokinetic/Pharmacodynamic Parameters May Explain Treatment Failures in Acute Otitis Media. Pediatr-Drugs 11, 243–249 (2009). https://doi.org/10.2165/00148581-200911040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200911040-00003

Keywords

Navigation