Skip to main content
Log in

Advances in Myeloma Genetics and Prospects for Pharmacogenomic Testing in Multiple Myeloma

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Pharmacogenomic studies in multiple myeloma, a neoplasia of clonally expanded malignant bone marrow plasma cells, are helping to set the stage for individualized therapy. Although relatively few in numbers, these studies are already providing new therapeutic targets and avenues for drug discoveries as well as contributing to novel prognostic markers in multiple myeloma. High-throughput mutation screening of the kinome promises to identify further novel targets for therapy. Genetics and gene expression profiling technology have improved molecular-based patient stratification and prognostic staging, expanded knowledge of the molecular mechanism of chemotherapeutic agents, and provided a better understanding of myeloma bone disease. The use of pharmacogenomic strategies in myeloma is thus already changing medical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

Notes

  1. 1The use of trade names is for product identification purposes only and does not imply endorsement

  2. 2The circulating level of soluble E-cadherin appears to be an independent prognostic factor of survival in myeloma.[69]

References

  1. Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003; 194: 96–104

    Article  PubMed  CAS  Google Scholar 

  2. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91(1): 3–21

    PubMed  CAS  Google Scholar 

  3. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001; 20(40): 5611–22

    Article  PubMed  CAS  Google Scholar 

  4. Kyle RA, Finkelstein S, Elveback LR, et al. Incidence of monoclonal proteins in a Minnesota community with a cluster of multiple myeloma. Blood 1972; 40(5): 719–24

    PubMed  CAS  Google Scholar 

  5. Leech SH, Bryan CF, Elston RC, et al. Genetic studies in multiple myeloma: 1. association with HLA-Cw5. Cancer 1983; 51(8): 1408–11

    Article  PubMed  CAS  Google Scholar 

  6. Lynch HT, Sanger WG, Pirruccello S, et al. Familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst 2001; 93(19): 1479–83

    Article  PubMed  CAS  Google Scholar 

  7. Grosbois B, Jego P, Attal M, et al. Familial multiple myeloma: report of fifteen families. Br J Haematol 1999; 105(3): 768–70

    Article  PubMed  CAS  Google Scholar 

  8. Sobol H, Vey N, Sauvan R, et al. Re: familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst 2002; 94(6): 461–2

    Article  PubMed  Google Scholar 

  9. Dilworth D, Liu L, Stewart AK, et al. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000; 95(5): 1869–71

    PubMed  CAS  Google Scholar 

  10. Davies FE, Dring AM, Li C, et al. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 2003; 102(13): 4504–11

    Article  PubMed  CAS  Google Scholar 

  11. Davies FE, Rollinson SJ, Rawstron AC, et al. High-producer haplotypes of tumor necrosis factor alpha and lymphotoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment. J Clin Oncol 2000; 18(15): 2843–51

    PubMed  CAS  Google Scholar 

  12. Dasgupta RK, Adamson PJ, Davies FE, et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood 2003; 102(7): 2345–50

    Article  PubMed  CAS  Google Scholar 

  13. Neben K, Mytilineos J, Moehler TM, et al. Polymorphisms of the tumor necrosis factor-alpha gene promoter predict for outcome after thalidomide therapy in relapsed and refractory multiple myeloma. Blood 2002; 100(6): 2263–5

    PubMed  CAS  Google Scholar 

  14. Soverini S, Cavo M, Cellini C, et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood 2003; 102(5): 1588–94

    Article  PubMed  CAS  Google Scholar 

  15. Chang H, Sloan S, Li D, et al. The t (4; 14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004; 125(1): 64–8

    Article  PubMed  Google Scholar 

  16. Filipits M, Pohl G, Stranzl T, et al. Low p27Kip1 expression is an independent adverse prognostic factor in patients with multiple myeloma. Clin Cancer Res 2003; 9(2): 820–6

    PubMed  CAS  Google Scholar 

  17. Fonseca R, Blood EA, Oken MM, et al. Myeloma and the t (11; 14) (q13; q32); evidence for a biologically defined unique subset of patients. Blood 2002; 99(10): 3735–41

    Article  PubMed  CAS  Google Scholar 

  18. Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003; 102(7): 2562–7

    Article  PubMed  CAS  Google Scholar 

  19. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t (4; 14) (p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101(4): 1520–9

    Article  PubMed  CAS  Google Scholar 

  20. Liu P, Leong T, Quam L, et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood 1996; 88(7): 2699–706

    PubMed  CAS  Google Scholar 

  21. Maxwell CA, Rasmussen E, Zhan F, et al. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood 2004; 104(4): 1151–8

    Article  PubMed  CAS  Google Scholar 

  22. Moreau P, Facon T, Leleu X, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002; 100(5): 1579–83

    Article  PubMed  CAS  Google Scholar 

  23. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349(26): 2483–94

    Article  PubMed  CAS  Google Scholar 

  24. Worel N, Greinix H, Ackermann J, et al. Deletion of chromosome 13q14 detected by fluorescence in situ hybridization has prognostic impact on survival after high-dose therapy in patients with multiple myeloma. Ann Hematol 2001; 80(6): 345–8

    Article  PubMed  CAS  Google Scholar 

  25. Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000; 95(6): 1925–30

    PubMed  CAS  Google Scholar 

  26. Johansson AS, Stenberg G, Widersten M, et al. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. J Mol Biol 1998; 278(3): 687–98

    Article  PubMed  CAS  Google Scholar 

  27. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002; 298(5600): 1912–34

    Article  PubMed  CAS  Google Scholar 

  28. Bardelli A, Parsons DW, Silliman N, et al. Mutational analysis of the tyrosine kinome in colorectal cancers [letter]. Science 2003; 300(5621): 949

    Article  PubMed  CAS  Google Scholar 

  29. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949–54

    Article  PubMed  CAS  Google Scholar 

  30. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304(5670): 554

    Article  PubMed  CAS  Google Scholar 

  31. Dunn DA. Mining the human “kinome”. Drug Discov Today 2002; 7(22): 1121–3

    Article  PubMed  Google Scholar 

  32. Onwuazor ON, Wen XY, Wang DY, et al. Mutation, SNP, and isoform analysis of fibroblast growth factor receptor 3 (FGFR3) in 150 newly diagnosed multiple myeloma patients. Blood 2003; 102(2): 772–3

    Article  PubMed  CAS  Google Scholar 

  33. Dai H, Holm R, Kristensen GB, et al. Fibroblast growth factor receptor 3 (FGFR3): analyses of the S249C mutation and protein expression in primary cervical carcinomas. Anal Cell Pathol 2001; 23(2): 45–9

    PubMed  CAS  Google Scholar 

  34. Ronchetti D, Bogni S, Finelli P, et al. Characterization of the t (4; 14) (p16.3; q32) in the KMS-18 multiple myeloma cell line. Leukemia 2001; 15(5): 864–5

    Article  PubMed  CAS  Google Scholar 

  35. Avet-Loiseau H, Facon T, Grosbois B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002; 99(6): 2185–91

    Article  PubMed  CAS  Google Scholar 

  36. Chesi M, Brents LA, Ely SA, et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 2001; 97(3): 729–36

    Article  PubMed  CAS  Google Scholar 

  37. Li Z, Zhu YX, Plowright EE, et al. The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood 2001; 97(8): 2413–9

    Article  PubMed  CAS  Google Scholar 

  38. Trudel S, Ely S, Farooqi Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t (4; 14) myeloma. Blood 2004; 103(9): 3521–8

    Article  PubMed  CAS  Google Scholar 

  39. Paterson JL, Li Z, Wen XY, et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 2004; 124(5): 595–603

    Article  PubMed  CAS  Google Scholar 

  40. Zhang S, Ramsay ES, Mock BA. Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. Proc Natl Acad Sci U S A 1998; 95(5): 2429–34

    Article  PubMed  CAS  Google Scholar 

  41. Tasaka T, Berenson J, Vescio R, et al. Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma. Br J Haematol 1997; 96(1): 98–102

    Article  PubMed  CAS  Google Scholar 

  42. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004; 5(3): 221–30

    Article  PubMed  CAS  Google Scholar 

  43. Garcia-Echeverria C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541 -A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5(3): 231–9

    Article  PubMed  CAS  Google Scholar 

  44. Roddam PL, Rollinson S, O’Driscoll M, et al. Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination. J Med Genet 2002; 39(12): 900–5

    Article  PubMed  CAS  Google Scholar 

  45. Landowski TH, Qu N, Buyuksal I, et al. Mutations in the Fas antigen in patients with multiple myeloma. Blood 1997; 90(11): 4266–70

    PubMed  CAS  Google Scholar 

  46. Ng MH, To KW, Lo KW, et al. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin Cancer Res 2001; 7(6): 1724–9

    PubMed  CAS  Google Scholar 

  47. Gonzalez Ordonez AJ, Fernandez Carreira JM, Fernandez Alvarez CR, et al. Normal frequencies of the C677T genotypes on the methylenetetrahydrofolate reductase (MTHFR) gene among lymphoproliferative disorders but not in multiple myeloma. Leuk Lymphoma 2000; 39(5–6): 607–12

    Article  PubMed  CAS  Google Scholar 

  48. Yanamandra K, Bocchini JA, Thurmon TF. Methylenetetrahydrofolate reductase 677CC normal genotype may protect against multiple myeloma. Br J Haematol 2003; 120(6): 1094–5

    Article  PubMed  Google Scholar 

  49. Gonzalez-Fraile MI, Garcia-Sanz R, Mateos MV, et al. Methylenetetrahydrofolate reductase genotype does not play a role in multiple myeloma pathogenesis. Br J Haematol 2002; 117(4): 890–2

    Article  PubMed  CAS  Google Scholar 

  50. Willems PM, Kuypers AW, Meijerink JP, et al. Sporadic mutations of the p53 gene in multiple myeloma and no evidence for germline mutations in three familial multiple myeloma pedigrees. Leukemia 1993; 7(7): 986–91

    PubMed  CAS  Google Scholar 

  51. Shaughnessy J, Jacobson J, Sawyer J, et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression. Blood 2003; 101(10): 3849–56

    Article  PubMed  CAS  Google Scholar 

  52. Barlogie Jr B, Shaughnessy JD. Early results of total therapy II in multiple myeloma: implications of cytogenetics and FISH. Int J Hematol 2002; 76Suppl. 1: 337–9

    Article  PubMed  Google Scholar 

  53. Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res 2002; 62(3): 715–20

    PubMed  CAS  Google Scholar 

  54. Barlogie B, Shaughnessy J, Tricot G, et al. Treatment of multiple myeloma. Blood 2004; 103(1): 20–32

    Article  PubMed  CAS  Google Scholar 

  55. Shaughnessy J, Rasmussen E, Zhan F, et al. Gene expression profiling can be used to predict EFS in myeloma patients treated with high dose therapy and tandem stem cell transplant [abstract]. Blood 2003; 102: 190a

    Google Scholar 

  56. Branca M. Genetics and medicine: putting gene arrays to the test. Science 2003; 300(5617): 238

    Article  PubMed  CAS  Google Scholar 

  57. Barille-Nion S, Barlogie B, Bataille R, et al. Advances in biology and therapy of multiple myeloma. Hematology (Am Soc Hematol Educ Program) 2003; (1): 78

    Google Scholar 

  58. Shaughnessy JD, Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol Rev 2003; 194: 140–63

    Article  PubMed  CAS  Google Scholar 

  59. Hideshima T, Richardson P, Anderson KC. Novel therapeutic approaches for multiple myeloma. Immunol Rev 2003; 194: 164–76

    Article  PubMed  CAS  Google Scholar 

  60. Chauhan D, Li G, Auclair D, et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 2003; 101(9): 3606–14

    Article  PubMed  CAS  Google Scholar 

  61. Chauhan D, Auclair D, Robinson EK, et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 2002; 21(9): 1346–58

    Article  PubMed  CAS  Google Scholar 

  62. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 2004; 101(2): 540–5

    Article  PubMed  CAS  Google Scholar 

  63. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107(4): 513–23

    Article  PubMed  CAS  Google Scholar 

  64. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423(6938): 448–52

    Article  PubMed  CAS  Google Scholar 

  65. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423(6938): 409–14

    Article  PubMed  CAS  Google Scholar 

  66. Magrangeas F, Nasser V, Avet-Loiseau H, et al. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood 2003; 101(12): 4998–5006

    Article  PubMed  CAS  Google Scholar 

  67. Hurt EM, Wiestner A, Rosenwald A, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004; 5(2): 191–9

    Article  PubMed  CAS  Google Scholar 

  68. Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91(12): 4457–63

    PubMed  CAS  Google Scholar 

  69. Syrigos KN, Harrington KJ, Karayiannakis AJ, et al. Circulating soluble E-cadherin levels are of prognostic significance in patients with multiple myeloma. Anticancer Res 2004; 24(3b): 2027–31

    PubMed  CAS  Google Scholar 

  70. Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995; 86(11): 4250–6

    PubMed  CAS  Google Scholar 

  71. Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 2001; 97(6): 1566–71

    Article  PubMed  CAS  Google Scholar 

  72. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101(11): 4569–75

    Article  PubMed  CAS  Google Scholar 

  73. Hideshima T, Bergsagel PL, Kuehl WM, et al. Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104(3): 607–18

    Article  PubMed  CAS  Google Scholar 

  74. Claudio JO, Masih-Khan E, Tang H, et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002; 100(6): 2175–86

    Article  PubMed  CAS  Google Scholar 

  75. Robbiani DF, Chesi M, Bergsagel PL. Bone lesions in molecular subtypes of multiple myeloma. N Engl J Med 2004; 351(2): 197–8

    Article  PubMed  CAS  Google Scholar 

  76. Claudio JO, Masih-Khan E, Stewart AK. Insights from the gene expression profiling of multiple myeloma. Curr Hematol Rep 2004; 3(1): 67–73

    PubMed  Google Scholar 

  77. Jenner RG, Maillard K, Cattini N, et al. Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc Natl Acad Sci U S A 2003; 100(18): 10399–404

    Article  PubMed  CAS  Google Scholar 

  78. Iwakoshi NN, Lee AH, Vallabhajosyula P, et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003; 4(4): 321–9

    Article  PubMed  CAS  Google Scholar 

  79. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999; 13(10): 1211–33

    Article  PubMed  CAS  Google Scholar 

  80. Gass JN, Gifford NM, Brewer JW. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 2002; 277(50): 49047–54

    Article  PubMed  CAS  Google Scholar 

  81. van Anken E, Romijn EP, Maggioni C, et al. Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 2003; 18(2): 243–53

    Article  PubMed  Google Scholar 

  82. Lee AH, Iwakoshi NN, Anderson KC, et al. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 2003; 100(17): 9946–51

    Article  PubMed  CAS  Google Scholar 

  83. Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101(6): 2377–80

    Article  PubMed  CAS  Google Scholar 

  84. Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101(4): 1530–4

    Article  PubMed  CAS  Google Scholar 

  85. Yang HH, Vescio R, Schenkein D, et al. A prospective, open-label safety and efficacy study of combination treatment with bortezomib (PS-341), velcade and melphalan in patients with relapsed or refractory multiple myeloma. Clin Lymphoma 2003; 4(2): 119–22

    Article  PubMed  CAS  Google Scholar 

  86. Orlowski RZ, Hall M, Voorhees P, et al. Phase I study of the proteosome inhibitor Bortezomib (PS-341), Velcade® in combination with pegylated liposomal doxurobicin (Doxil) in patients with refractory hematologic malignancies [abstract]. Blood 2002; 100: 122a

    Google Scholar 

  87. Zangari M, Barlogie B, Prather J. Marked activity also in del 13 multiple myeloma (MM) of PS341 (PS) and subsequent thalidomide (THAL) in a setting of resistance to post-autotransplant salvage therapies [abstract]. Blood 2002; 100: 104a

    Article  Google Scholar 

Download references

Acknowledgments

Dr Claudio receives funding from the Multiple Myeloma Research Foundation (MMRF); Dr Stewart receives funding from MMRF, Canadian Institutes of Heath Research (CIHR), and the National Cancer Institute of Canada (NCIC).

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Keith Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claudio, J.O., Stewart, A.K. Advances in Myeloma Genetics and Prospects for Pharmacogenomic Testing in Multiple Myeloma. Am J Pharmacogenomics 5, 35–43 (2005). https://doi.org/10.2165/00129785-200505010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505010-00003

Keywords

Navigation