Skip to main content
Log in

Molecular Diagnosis of CYP21 Mutations in Congenital Adrenal Hyperplasia

Implications for Genetic Counseling

  • Molecular Diagnostic
  • Published:
American Journal of Pharmacogenomics

Abstract

Congenital adrenal hyperplasia (CAH) is an inherited disorder of steroid biosynthesis most often attributable to mutations in CYP21 (also termed CYP21A2) encoding the active steroid 21-hydroxylase enzyme. This review focuses on clinical and genetic aspects of CAH, and updates the reader on current methodology and applications for molecular genetic diagnosis.

Genotyping patients with CAH has revealed >50 mutations within CYP21, yet only 10 mutations account for ~95% of affected alleles. Many CYP21 mutations are gene conversions arising via transfer of gene sequences between the non-functional CYP21 pseudogene and CYP21.

Phenotype is generally well-correlated with genotype. Historically, CAH has been divided into 3 types of disease: classic salt-wasting, classic simple virilizing (non-salt-wasting), and nonclassic. Recent findings support the notion that rather than discrete phenotypic categories, CAH is better represented as a continuum of phenotypes, from severe to mild.

Molecular genetic diagnosis is most effectively employed now in prenatal diagnosis of classic CAH. As newborn screening for CAH becomes more widespread, genotyping may be implemented to resolve diagnostic difficulties encountered with hormonal testing. As automated methods of DNA diagnosis such as microarrays or gene chips are refined, it is likely that genetic screening will become less expensive and more readily available. The clinician should be aware of the potential for both false negatives and false positives with PCR-based gene screening. In short, whereas molecular genetic diagnosis is a valuable tool, it cannot replace clinical acumen and hormonal assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Therrell Jr BL, Berenbaum SA, Manter-Kapanke V, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 1998; 101: 583–90

    Article  PubMed  Google Scholar 

  2. Thilen A, Woods KA, Perry LA, et al. Early growth is not increased in untreated moderately severe 21-hydroxylase deficiency. Acta Paediatr 1995; 84: 894–8

    Article  PubMed  CAS  Google Scholar 

  3. Srikanth MS, West BR, Ishitani M, et al. Benign testicular tumors in children with congenital adrenal hyperplasia. J Pediatr Surg 1992 27: 639–41

    Article  PubMed  CAS  Google Scholar 

  4. Prader A, Zachmann M, Illig R. Fertility in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Acta Endocrinol 1973; 177 Suppl.: 57

    Google Scholar 

  5. Hague WM, Adams J, Rodda C, et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin Endocrinol (Oxf) 1990; 33: 501–10

    Article  CAS  Google Scholar 

  6. Eugster EA, Dimeglio LA, Wright JC, et al. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J Pediatr 2001; 138: 26–32

    Article  PubMed  CAS  Google Scholar 

  7. Lo J, Grumbach M. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol Metab Clin North Am 2001; 30: 207–29

    Article  PubMed  CAS  Google Scholar 

  8. Urban MD, Lee PA, Migeon CJ. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N Engl J Med 1978; 299: 1392–6

    Article  PubMed  CAS  Google Scholar 

  9. Jaresch S, Kornely E, Kley HK, et al. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab 1992; 74: 685–9

    Article  PubMed  CAS  Google Scholar 

  10. Berenbaum SA. Cognitive function in congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001; 30: 173–92

    Article  PubMed  CAS  Google Scholar 

  11. Meyer-Bahlburg HF. Gender and sexuality in classic congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001; 30: 155–71

    Article  PubMed  CAS  Google Scholar 

  12. New MI, Lorenzen F, Lerner AJ, et al. Genotyping steroid 21-hydroxylase deficiency: Hormonal reference data. J Clin Endocrinol Metab 1983; 57: 320–6

    Article  PubMed  CAS  Google Scholar 

  13. de Peretti E, Forest MG. Pitfalls in the etiological diagnosis of congenital adrenal hyperplasia in the early neonatal period. Horm Res 1982; 16: 10–22

    Article  PubMed  Google Scholar 

  14. Fitness J, Dixit N, Webster D, et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1999; 84: 960–6

    Article  PubMed  CAS  Google Scholar 

  15. Silva IN, Kater CE, Cunha CF, et al. Randomised controlled trial of growth effect of hydrocortisone in congenital adrenal hyperplasia. Arch Dis Child 1997; 77: 214–8

    Article  PubMed  CAS  Google Scholar 

  16. Schnitzer JJ, Donahoe PK. Surgical treatment of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001; 30: 137–54

    Article  PubMed  CAS  Google Scholar 

  17. Speiser PW, Dupont B, Rubinstein P, et al. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985; 37: 650–67

    PubMed  CAS  Google Scholar 

  18. Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231–8

    Article  PubMed  CAS  Google Scholar 

  19. White PC, Grossberger D, Onufer BJ, et al. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci USA 1985; 82: 1089–93

    Article  PubMed  CAS  Google Scholar 

  20. Burch GH, Gong Y, Liu W, et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 1997; 17: 104–8

    Article  PubMed  CAS  Google Scholar 

  21. Higashi Y, Yoshioka H, Yamane M, et al. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci U S A 1986; 83: 2841–5

    Article  PubMed  CAS  Google Scholar 

  22. White PC, New MI, Dupont B. Structure of human steroid 21-hydroxylase genes. Proc Natl Acad Sci U S A 1986; 83: 5111–5

    Article  PubMed  CAS  Google Scholar 

  23. Day DJ, Speiser PW, Schulze E, et al. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum Mol Genet 1996; 5: 2039–48

    Article  PubMed  CAS  Google Scholar 

  24. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endo Rev 2000; 21: 245–91

    Article  CAS  Google Scholar 

  25. Dupont B, Oberfield SE, Smithwick EM, et al. Close genetic linkage between HLA and congenital adrenal hyperplasia. Lancet 1977; II: 1309–11

    Article  Google Scholar 

  26. Pollack MS, Maurer D, Levine LS, et al. HLA typing of amniotic cells: the prenatal diagnosis of congenital adrenal hyperplasia (21-OH-deficiency type). Transplant Proc 1979; 11: 1726–8 ia27._The Human Gene Mutation Database, Cardiff. Available from URL: http://archive.uwcm.ac.uk/uwcm/mg/search/120605.html [Accessed 2001 May]

    PubMed  CAS  Google Scholar 

  27. White PC, New MI, Dupont B. HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome p-450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci U S A 1984; 81: 7505–9

    Article  PubMed  CAS  Google Scholar 

  28. Donohoue PA, van Dop C, McLean RH, et al. Gene conversion in salt-losing congenital adrenal hyperplasia with absent complement C4B protein. J Clin Endocrinol Metab 1986; 62: 995–1002

    Article  PubMed  CAS  Google Scholar 

  29. White PC, Vitek A, Dupont B, et al. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A 1988; 85: 4436–40

    Article  PubMed  CAS  Google Scholar 

  30. Higashi Y, Tanae A, Inoue H, et al. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [p-450(c21)] deficiency in humans: possible gene conversion products. Proc Natl Acad Sci U S A 1988; 85: 7486–90

    Article  PubMed  CAS  Google Scholar 

  31. Speiser PW, Dupont J, Zhu D, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992; 90: 584–95

    Article  PubMed  CAS  Google Scholar 

  32. Higashi Y, Hiromasa T, Tanae A, et al. Effects of individual mutations in the p-450(c21) pseudogene on the p-450(c21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency. J Biochem (Tokyo) 1991; 109: 638–44

    CAS  Google Scholar 

  33. Globerman H, Amor M, Parker KL, et al. Nonsense mutation causing steroid 21-hydroxylase deficiency. J Clin Invest 1988; 82: 139–44

    Article  PubMed  CAS  Google Scholar 

  34. Amor M, Parker KL, Globerman H, et al. Mutation in the CYP21B gene (Ile172→Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A 1988; 85: 1600–4

    Article  PubMed  CAS  Google Scholar 

  35. Speiser PW, New MI, White PC. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,Dr1. N Engl J Med 1988; 319: 19–23

    Article  PubMed  CAS  Google Scholar 

  36. Tusie-Luna MT, Speiser PW, Dumic M, et al. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol 1991; 5: 685–92

    Article  PubMed  CAS  Google Scholar 

  37. Speiser PW, Laforgia N, Kato K, et al. First trimester prenatal treatment and molecular genetic diagnosis of congenital adrenal hyperplasia (21-hydroxylase deficiency). J Clin Endocrinol Metab 1990; 70: 838–48

    Article  PubMed  CAS  Google Scholar 

  38. Owerbach D, Crawford YM, Draznin MB. Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification. Mol Endocrinol 1990; 4: 125–31

    Article  PubMed  CAS  Google Scholar 

  39. Lee HH, Chao HT, Ng HT, et al. Direct molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia. J Med Genet 1996; 33: 371–5

    Article  PubMed  CAS  Google Scholar 

  40. Oriola J, Plensa I, Machuca I, et al. Rapid screening method for detecting mutations in the 21-hydroxylase gene. Clin Chem; 1997 43: 557–61

    PubMed  CAS  Google Scholar 

  41. Van de Velde H, Sermon K, De Vos A, et al. Fluorescent PCR and automated fragment analysis in preimplantation genetic diagnosis for 21-hydroxylase deficiency in congenital adrenal hyperplasia. Mol Hum Reprod 1999; 5: 691–6

    Article  PubMed  Google Scholar 

  42. Tajima T, Fujieda K, Nakayama K, et al. Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism. J Clin Invest 1993; 92: 2182–90

    Article  PubMed  CAS  Google Scholar 

  43. Wedell A, Luthman H. Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations. Hum Mol Genet 1993; 2: 499–504

    Article  PubMed  CAS  Google Scholar 

  44. Wilson RC, Mercado AB, Cheng KC, et al. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J Clin Endocrinol Metab 1995; 80: 2322–9

    Article  PubMed  CAS  Google Scholar 

  45. Jaaskelainen J, Levo A, Voutilainen R, et al. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J Clin Endocrinol Metab 1997; 82: 3293–7

    Article  PubMed  CAS  Google Scholar 

  46. Wedell A. Molecular genetics of congenital adrenal hyperplasia (21-hydroxylase deficiency): implications for diagnosis, prognosis and treatment. Acta Paediatr 1998; 87: 159–64

    Article  PubMed  CAS  Google Scholar 

  47. Day DJ, Speiser PW, White PC, et al. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 1995; 29: 152–62

    Article  PubMed  CAS  Google Scholar 

  48. Hacia JG. Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet 1999; 21: 42–7

    Article  PubMed  CAS  Google Scholar 

  49. Wedell A, Ritzen EM, Haglund-Stengler B, et al. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotypegenotype relationships of common mutations. Proc Natl Acad Sci U S A 1992; 89: 7232–6

    Article  PubMed  CAS  Google Scholar 

  50. Ohlsson G, Schwartz M. Mutations in the gene encoding 21-hydroxylase detected by solid-phase minisequencing. Hum Genet 1997; 99: 98–102

    Article  PubMed  CAS  Google Scholar 

  51. Ordonez-Sanchez ML, Ramirez-Jimenez S, Lopez-Gutierrez AU, et al. Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet 1998; 102: 170–7

    Article  PubMed  CAS  Google Scholar 

  52. Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J Biol Chem 1990; 265: 20916–22

    PubMed  CAS  Google Scholar 

  53. Balsamo A, Cacciari E, Baldazzi L, et al. CYP21 analysis and phenotype/genotype relationship in the screened population of the Italian Emilia-Romagna region. Clin Endocrinol (Oxf) 2000; 53: 117–25

    Article  CAS  Google Scholar 

  54. Wedell A, Thilen A, Ritzen EM, et al. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 1994; 78: 1145–52

    Article  PubMed  CAS  Google Scholar 

  55. Krone N, Braun A, Roscher AA, et al. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000; 85: 1059–65

    Article  PubMed  CAS  Google Scholar 

  56. Chin D, Speiser PW, Imperato-McGinley J, et al. Study of a kindred with classic congenital adrenal hyperplasia: diagnostic challenge due to phenotypic variance. J Clin Endocrinol Metab 1998; 83: 1940–5

    Article  PubMed  CAS  Google Scholar 

  57. Speiser PW, New MI. Genotype and hormonal phenotype in nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab 1987; 64: 86–91

    Article  PubMed  CAS  Google Scholar 

  58. Bachega TA, Billerbeck AE, Marcondes JA, et al. Influence of different genotypes on 17-hydroxyprogesterone levels in patients with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin Endocrinol (Oxf) 2000; 52: 601–7

    Article  CAS  Google Scholar 

  59. Speiser PW, Agdere L, Ueshiba H, et al. Aldosterone synthesis in salt-wasting congenital adrenal hyperplasia with complete absence of adrenal 21-hydroxylase. N Engl J Med 1991; 324: 145–9

    Article  PubMed  CAS  Google Scholar 

  60. Stoner E, Dimartino-Nardi J, Kuhnle U, et al. Is salt-wasting in congenital adrenal hyperplasia due to the same gene as the fasciculata defect? Clin Endocrinol (Oxf) 1986; 24: 9–20

    Article  CAS  Google Scholar 

  61. Winkel CA, Casey ML, Worley RJ, et al. Extraadrenal steroid 21-hydroxylase activity in a woman with congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1983; 56: 104–7

    Article  PubMed  CAS  Google Scholar 

  62. Mellon SH, Miller WL. Extraadrenal steroid 21-hydroxylation is not mediated by p450c21. J Clin Invest 1989; 84: 1497–502

    Article  PubMed  CAS  Google Scholar 

  63. Wilson JD, Griffin JE, Russell DW. Steroid 5 alpha-reductase 2 deficiency. Endocr Rev 1993; 14: 577–93

    PubMed  CAS  Google Scholar 

  64. Choong CS, Kemppainen JA, Zhou ZX, et al. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996; 10: 1527–35

    Article  PubMed  CAS  Google Scholar 

  65. Carlson AD, Obeid JS, Kanellopoulou N, et al. Congenital adrenal hyperplasia: update on prenatal diagnosis and treatment. J Steroid Biochem Mol Biol 1999; 69: 19–29

    Article  PubMed  CAS  Google Scholar 

  66. Hohmann H, Michel S, Reiber W, et al. Applicability of four new antibodies for the detection of fetal nucleated cells out of maternal blood by fish analysis. Fetal Diagn Ther 2001; 16: 52–6

    Article  PubMed  CAS  Google Scholar 

  67. Lo YM. Fetal DNA in maternal plasma: biology and diagnostic applications. Clin Chem 2000; 46: 1903–6

    PubMed  CAS  Google Scholar 

  68. Sekizawa A, Saito H. Prenatal screening of single-gene disorders from maternal blood. Am J Pharmacogenomics 2001; 1: 111–7

    Article  PubMed  CAS  Google Scholar 

  69. Nordenstrom A, Thilen A, Hagenfeldt L, et al. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1999; 84: 1505–9

    Article  PubMed  CAS  Google Scholar 

  70. Tusie Luna MT, White PC. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci U S A 1995; 92: 10796–800

    Article  Google Scholar 

  71. Witchel SF, Lee PA. Identification of heterozygotic carriers of 21-hydroxylase deficiency: sensitivity of ACTH stimulation tests. Am J Med Genet 1998; 76: 337–42

    Article  PubMed  CAS  Google Scholar 

  72. Lejeune-Lenain C, Cantraine F, Dufrasnes M, et al. An improved method for the detection of heterozygosity of congenital virilizing adrenal hyperplasia. Clin Endocrinol (Oxf) 1980; 12: 525–35

    Article  CAS  Google Scholar 

  73. Knochenhauer ES, Cortet-Rudelli C, Cunnigham RD, et al. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J Clin Endocrinol Metab 1997; 82: 479–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis W. Speiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speiser, P.W. Molecular Diagnosis of CYP21 Mutations in Congenital Adrenal Hyperplasia. Am J Pharmacogenomics 1, 101–110 (2001). https://doi.org/10.2165/00129785-200101020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101020-00003

Keywords

Navigation