Skip to main content
Log in

Metabolic Effects of β-Adrenoceptor Antagonists with Special Emphasis on Carvedilol

  • Current Opinion
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Although β-adrenoceptor antagonists (β-blockers) have effects on metabolism via their mechanism as blockers of adrenergic stimulation, most interest in the metabolic effects of β-blockers is caused by their effect on glucose metabolism. Strict metabolic control and management of cardiovascular risk factors in patients with diabetes mellitus has proven to be of great importance in the improvement of prognosis. β-Blockers are necessary tools for the treatment of heart failure and hypertension. The use of β-blockers in patients with diabetes mellitus has been controversial because of fear of deterioration of metabolic control of glucose and lipids and blunting of the symptoms of hypoglycemia. Currently, it appears that there is a beneficial metabolic effect with the third-generation β-blocker carvedilol. Comparisons have been made between the second-generation β-blocker metoprolol and carvedilol, with a clear advantage for carvedilol in terms of metabolic control. In the GEMINI (Glycemic Effects in Diabetes Mellitus: Carvedilol-Metoprolol Comparison in Hypertensives) trial, a decrease of 9.1% (p = 0.004) in insulin resistance, compared with baseline values, was seen in patients treated with carvedilol, whereas no significant difference was seen in the group of patients treated with metoprolol. Additionally, an increase in glycosylated hemoglobin of 0.15% from baseline was seen in the metoprolol group (p < 0.001) compared with no significant change in the carvedilol group. These findings indicate that, as carvedilol exerts favorable effects on glucose metabolism compared with metoprolol, patients with diabetes mellitus could benefit from treatment with carvedilol rather than metoprolol. The mechanisms behind these findings are not yet fully understood. Several mechanisms have been suggested, and special interest has been paid to the investigation of the potential beneficial role of the β2- and α1-adrenoceptor-blocking effects of carvedilol, along with its known antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Table III

Similar content being viewed by others

References

  1. Reid IR, Lucas J, Wattie D, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 2005; 90(9): 5212–6.

    Article  PubMed  CAS  Google Scholar 

  2. Biondi B, Palmieri EA, Klain M, et al. Subclinical hyperthyroidism: clinical features and treatment options. Eur J Endocrinol 2005; 152(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Hesayen A, Azevedo ER, Floras JS, et al. Selective versus nonselective beta-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization. Eur J Heart Fail 2005; 7(4): 618–23.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339(4): 229–34.

    Article  PubMed  CAS  Google Scholar 

  5. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979 Jan; 59(1): 8–13.

    Article  PubMed  CAS  Google Scholar 

  6. Fuller JH, Shipley MJ, Rose G, et al. Mortality from coronary heart disease and stroke in relation to degree of glycaemia: the Whitehall study. Br Med J (Clin Res Ed) 1983 Sep 24; 287(6396): 867–70.

    Article  CAS  Google Scholar 

  7. Gustafsson I, Hildebrandt P, Seibaek M, et al. Long-term prognosis of diabetic patients with myocardial infarction: relation to antidiabetic treatment regimen. The TRACE Study Group. Eur Heart J 2000; 21(23): 1937–43.

    Article  PubMed  CAS  Google Scholar 

  8. Gustafsson F, Torp-Pedersen C, Seibaek M, et al. Effect of age on short and long-term mortality in patients admitted to hospital with congestive heart failure. Eur Heart J 2004; 25(19): 1711–7.

    Article  PubMed  Google Scholar 

  9. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348(5): 383–93.

    Article  PubMed  Google Scholar 

  10. Malmberg K, Norhammar A, Wedel H, et al. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999; 99(20): 2626–32.

    Article  PubMed  CAS  Google Scholar 

  11. Dahlof B, Lindholm LH, Hansson L, et al. Morbidity and mortality in the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension). Lancet 1991; 338(8778): 1281–5.

    Article  PubMed  CAS  Google Scholar 

  12. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ 1992; 304(6824): 405–12.

    Article  Google Scholar 

  13. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002 Dec 18; 288(23): 2981–97.

    Article  Google Scholar 

  14. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998 Sep 12; 317(7160): 713–20.

    Article  Google Scholar 

  15. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003 Nov 8; 362(9395): 1527–35.

    Article  PubMed  CAS  Google Scholar 

  16. Hansen O, Johansson BW, Nilsson-Ehle P, et al. Effects of carvedilol on the metabolic, hemodynamic, and electrocardiographic responses to increased plasma epinephrine in normal subjects. J Cardiovasc Pharmacol 1994; 24(6): 853–9.

    Article  PubMed  CAS  Google Scholar 

  17. Jacob S, Rett K, Wicklmayr M, et al. Differential effect of chronic treatment with two beta-blocking agents on insulin sensitivity: the carvedilol-metoprolol study. J Hypertens 1996; 14(4): 489–94.

    Article  PubMed  CAS  Google Scholar 

  18. Pollare T, Lithell H, Selinus I, et al. Application of prazosin is associated with an increase of insulin sensitivity in obese patients with hypertension. Diabetologia 1988; 31(7): 415–20.

    Article  PubMed  CAS  Google Scholar 

  19. Dornhorst A, Powell SH, Pensky J. Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion. Lancet 1985; I(8421): 123–6.

    Article  Google Scholar 

  20. Holzgreve H, Nakov R, Beck K, et al. Antihypertensive therapy with verapamil SR plus trandolapril versus atenolol plus chlorthalidone on glycemic control. Am J Hypertens 2003; 16(5 Pt 1): 381–6.

    Article  PubMed  CAS  Google Scholar 

  21. Pollare T, Lithell H, Selinus I, et al. Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients. BMJ 1989; 298(6681): 1152–7.

    Article  PubMed  CAS  Google Scholar 

  22. Malminiemi K, Lahtela J, Malminiemi O, et al. Insulin sensitivity in a long-term crossover trial with celiprolol and other antihypertensive agents. J Cardiovasc Pharmacol 1998; 31(1): 140–5.

    Article  PubMed  CAS  Google Scholar 

  23. Poirier L, Cleroux J, Nadeau A, et al. Effects of nebivolol and atenolol on insulin sensitivity and haemodynamics in hypertensive patients. J Hypertens 2001; 19(8): 1429–35.

    Article  PubMed  CAS  Google Scholar 

  24. Celik T, Iyisoy A, Kursaklioglu H, et al. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients. J Hypertens 2006; 24(3): 591–6.

    Article  PubMed  CAS  Google Scholar 

  25. Reiter MJ. Cardiovascular drug class specificity: beta-blockers. Prog Cardiovasc Dis 2004; 47(1): 11–33.

    Article  PubMed  CAS  Google Scholar 

  26. Pischon T, Sharma AM. Use of beta-blockers in obesity hypertension: potential role of weight gain. Obes Rev 2001; 2(4): 275–80.

    Article  PubMed  CAS  Google Scholar 

  27. Feskens EJ, Tuomilehto J, Stengard JH, et al. Hypertension and overweight associated with hyperinsulinaemia and glucose tolerance: a longitudinal study of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetologia 1995; 38(7): 839–47.

    Article  PubMed  CAS  Google Scholar 

  28. Jacob S, Balletshofer B, Henriksen EJ, et al. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers. Blood Press 1999; 8(5–6): 261–8.

    Article  PubMed  CAS  Google Scholar 

  29. Grassi G, Cattaneo BM, Seravalle G, et al. Obesity and the sympathetic nervous system. Blood Press Suppl 1996; 1: 43–6.

    CAS  Google Scholar 

  30. Rocchini AP. Cardiovascular regulation in obesity-induced hypertension. Hypertension 1992; 19(1 Suppl.): 156–60.

    Google Scholar 

  31. Arumanayagam M, Chan S, Tong S, et al. Antioxidant properties of carvedilol and metoprolol in heart failure: a double-blind randomized controlled trial. J Cardiovasc Pharmacol 2001; 37(1): 48–54.

    Article  PubMed  CAS  Google Scholar 

  32. Yasunari K, Maeda K, Nakamura M, et al. Effects of carvedilol on oxidative stress in polymorphonuclear and mononuclear cells in patients with essential hypertension. Am J Med 2004; 116(7): 460–5.

    Article  PubMed  CAS  Google Scholar 

  33. Mehta JL, Lopez LM, Chen L, et al. Alterations in nitric oxide synthase activity, superoxide anion generation, and platelet aggregation in systemic hypertension, and effects of celiprolol. Am J Cardiol 1994; 74(9): 901–5.

    Article  PubMed  CAS  Google Scholar 

  34. Giugliano D, Acampora R, Marfella R, et al. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension: a randomized, controlled trial. Ann Intern Med 1997; 126(12): 955–9.

    PubMed  CAS  Google Scholar 

  35. Pollare T, Lithell H, Morlin C, et al. Metabolic effects of diltiazem and atenolol: results from a randomized, double-blind study with parallel groups. J Hypertens 1989; 7(7): 551–9.

    Article  PubMed  CAS  Google Scholar 

  36. Lithell H, Pollare T, Vessby B. Metabolic effects of pindolol and propranolol in a double-blind cross-over study in hypertensive patients. Blood Press 1992; 1(2): 92–101.

    Article  PubMed  CAS  Google Scholar 

  37. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14(3): 173–94.

    Article  Google Scholar 

  38. Lind L, Berne C, Pollare T, et al. Metabolic effects of isradipine as monotherapy or in combination with pindolol during long-term antihypertensive treatment. J Intern Med 1994; 236(1): 37–42.

    Article  PubMed  CAS  Google Scholar 

  39. Lind L, Berne C, Pollare T, et al. Metabolic effects of anti-hypertensive treatment with nifedipine or furosemide: a double-blind, cross-over study. J Hum Hypertens 1995; 9(2): 137–41.

    PubMed  CAS  Google Scholar 

  40. Haenni A, Lithell H. Treatment with a beta-blocker with beta 2-agonism improves glucose and lipid metabolism in essential hypertension. Metabolism 1994; 43(4): 455–61.

    Article  PubMed  CAS  Google Scholar 

  41. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359(9311): 995–1003.

    Article  PubMed  CAS  Google Scholar 

  42. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003; 362(9377): 7–13.

    Article  PubMed  CAS  Google Scholar 

  43. Weinberger MH. Antihypertensive therapy and lipids: evidence, mechanisms, and implications. Arch Intern Med 1985; 145(6): 1102–5.

    Article  PubMed  CAS  Google Scholar 

  44. Jacob S, Rett K, Henriksen EJ. Antihypertensive therapy and insulin sensitivity: do we have to redefine the role of beta-blocking agents? Am J Hypertens 1998; 11(10): 1258–65.

    Article  PubMed  CAS  Google Scholar 

  45. Kjekshus J, Gilpin E, Cali G, et al. Diabetic patients and beta-blockers after acute myocardial infarction. Eur Heart J 1990; 11(1): 43–50.

    PubMed  CAS  Google Scholar 

  46. Hjalmarson A, Elmfeldt D, Herlitz J, et al. Effect on mortality of metoprolol in acute myocardial infarction: a double-blind randomised trial. Lancet 1981; II(8251): 823–7.

    Article  Google Scholar 

  47. Metoprolol in Acute Myocardial Infarction (MIAMI). A randomised placebo-controlled international trial. The MIAMI Trial Research Group. Eur Heart J 1985; 6(3): 199–226.

    Google Scholar 

  48. First International Study of Infarct Survival Collaborative Group. Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. Lancet 1986; II(8498): 57–66.

    Google Scholar 

  49. Malmberg K, Herlitz J, Hjalmarson A, et al. Effects of metoprolol on mortality and late infarction in diabetics with suspected acute myocardial infarction: retrospective data from two large studies. Eur Heart J 1989; 10(5): 423–8.

    PubMed  CAS  Google Scholar 

  50. Gundersen T, Kjekshus J. Timolol treatment after myocardial infarction in diabetic patients. Diabetes Care 1983; 6(3): 285–90.

    Article  PubMed  CAS  Google Scholar 

  51. Haas SJ, Vos T, Gilbert RE, et al. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 2003; 146(5): 848–53.

    Article  PubMed  CAS  Google Scholar 

  52. Jonas M, Reicher-Reiss H, Boyko V, et al. Usefulness of beta-blocker therapy in patients with non-insulin-dependent diabetes mellitus and coronary artery disease. Bezafibrate Infarction Prevention (BIP) Study Group. Am J Cardiol 1996; 77(15): 1273–7.

    Article  PubMed  CAS  Google Scholar 

  53. Bell DS. Advantages of a third-generation beta-blocker in patients with diabetes mellitus. Am J Cardiol 2004; 93(9A): 49–52B.

    Article  Google Scholar 

  54. Deacon SP, Karunanayake A, Barnett D. Acebutolol, atenolol, and propranolol and metabolic responses to acute hypoglycaemia in diabetics. BMJ 1977; 2(6097): 1255–7.

    Article  PubMed  CAS  Google Scholar 

  55. Lager I, Blohme G, Smith U. Effect of cardioselective and non-selective beta-blockade on the hypoglycaemic response in insulin-dependent diabetics. Lancet 1979; I(8114): 458–62.

    Article  Google Scholar 

  56. Shorr RI, Ray WA, Daugherty JR, et al. Antihypertensives and the risk of serious hypoglycemia in older persons using insulin or sulfonylureas. JAMA 1997; 278(1): 40–3.

    Article  PubMed  CAS  Google Scholar 

  57. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 2004; 292(18): 2227–36.

    Article  PubMed  CAS  Google Scholar 

  58. Torp-Pedersen C, Cleland JG, Di Lenarda A, et al. Carvedilol reduces the risk for new onset of diabetes related adverse events in heart failure compared to metoprolol: results of the COMET study [abstract]. J Am Coll Cardiol 2005; 45 Suppl. 1: 187A.

    Google Scholar 

  59. Lowel H, Koenig W, Engel S, et al. The impact of diabetes mellitus on survival after myocardial infarction: can it be modified by drug treatment? Results of a population-based myocardial infarction register follow-up study. Diabetologia 2000; 43(2): 218–26.

    Article  PubMed  CAS  Google Scholar 

  60. Karlson BW, Herlitz J, Wiklund O, et al. Characteristics and prognosis of patients with acute myocardial infarction in relation to whether they were treated in the coronary care unit or in another ward. Cardiology 1992; 81(2–3): 134–44.

    Article  PubMed  CAS  Google Scholar 

  61. Gurwitz JH, Goldberg RJ, Chen Z, et al. Beta-blocker therapy in acute myocardial infarction: evidence for underutilization in the elderly. Am J Med 1992; 93(6): 605–10.

    Article  PubMed  CAS  Google Scholar 

  62. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–53.

    Article  Google Scholar 

  63. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42(6): 1206–52.

    Article  PubMed  CAS  Google Scholar 

  64. Colagiuri S, Cull CA, Holman RR. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? UK prospective diabetes study 61. Diabetes Care 2002; 25(8): 1410–7.

    Article  PubMed  Google Scholar 

  65. Khaw KT, Wareham N, Luben R, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). BMJ 2001; 322(7277): 15–8.

    Article  PubMed  CAS  Google Scholar 

  66. Yue TL, Cheng HY, Lysko PG, et al. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992; 263(1): 92–8.

    PubMed  CAS  Google Scholar 

  67. Ohlstein EH, Arleth AJ, Storer B, et al. Carvedilol inhibits endothelin-1 biosynthesis in cultured human coronary artery endothelial cells. J Mol Cell Cardiol 1998; 30(1): 167–73.

    Article  PubMed  CAS  Google Scholar 

  68. Lysko PG, Webb CL, Gu JL, et al. A comparison of carvedilol and metoprolol antioxidant activities in vitro. J Cardiovasc Pharmacol 2000; 36(2): 277–81.

    Article  PubMed  CAS  Google Scholar 

  69. Deedwania PC, Giles TD, Kilbaner M, et al. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am Heart J 2005; 149(1): 159–67.

    Article  PubMed  CAS  Google Scholar 

  70. Galletti F, Strazzullo P, Capaldo B, et al. Controlled study of the effect of angiotensin converting enzyme inhibition versus calcium-entry blockade on insulin sensitivity in overweight hypertensive patients: Trandolapril Italian Study (TRIS). J Hypertens 1999; 17(3): 439–45.

    Article  PubMed  CAS  Google Scholar 

  71. Niklason A, Hedner T, Niskanen L, et al. Development of diabetes is retarded by ACE inhibition in hypertensive patients: a subanalysis of the Captopril Prevention Project (CAPPP). J Hypertens 2004; 22(3): 645–52.

    Article  PubMed  CAS  Google Scholar 

  72. Olsen MH, Fossum E, Hoieggen A, et al. Long-term treatment with losartan versus atenolol improves insulin sensitivity in hypertension: ICARUS, a LIFE substudy. J Hypertens 2005; 23(4): 891–8.

    Article  PubMed  CAS  Google Scholar 

  73. Giugliano D, Ceriello A, Paolisso G. Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism 1995; 44(3): 363–8.

    Article  PubMed  CAS  Google Scholar 

  74. Smith RS, Warren DJ. Effect of acute oral beta adrenergic blockade on muscle blood flow in man. Cardiovasc Res 1982; 16(4): 205–8.

    Article  PubMed  CAS  Google Scholar 

  75. Lind L, Lithell H. Decreased peripheral blood flow in the pathogenesis of the metabolic syndrome comprising hypertension, hyperlipidemia, and hyperinsulinemia. Am Heart J 1993; 125(5 Pt 2): 1494–7.

    Article  PubMed  CAS  Google Scholar 

  76. Dunder K, Lind L, Zethelius B, et al. Increase in blood glucose concentration during antihypertensive treatment as a predictor of myocardial infarction: population based cohort study. BMJ 2003; 326(7391): 681.

    Article  PubMed  Google Scholar 

  77. Samuelsson O, Pennert K, Andersson O, et al. Diabetes mellitus and raised serum triglyceride concentration in treated hypertension: are they of prognostic importance? Observational study. BMJ 1996; 313(7058): 660–3.

    Article  PubMed  CAS  Google Scholar 

  78. Joshua I, Barzilay SP. Risk and impact of incident glucose disorders in hypertensive older adults treated with an ACE inhibitor, a diuretic, or a calcium channel blocker: a report from The ALLHAT Trial. Am J Hypertens 2004; 17 (5 Suppl. 1):51.

    Google Scholar 

  79. Verdecchia P, Reboldi G, Angeli F, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension 2004; 43(5): 963–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A grant was awarded from the Danish Heart Foundation for the preparation of this review.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britt Kveiborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kveiborg, B., Christiansen, B., Major-Petersen, A. et al. Metabolic Effects of β-Adrenoceptor Antagonists with Special Emphasis on Carvedilol. Am J Cardiovasc Drugs 6, 209–217 (2006). https://doi.org/10.2165/00129784-200606040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200606040-00001

Keywords

Navigation