Skip to main content
Log in

Strategies for Minimizing Hyperlipidemia After Cardiac Transplantation

  • Therapy In Practice
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Allograft coronary artery disease represents a major limitation to long-term survival after cardiac transplantation. Hyperlipidemias have been linked to the development of native coronary atherosclerosis, and hyperlipidemic states have correlated with the severity of allograft coronary artery disease. Heart transplant recipients typically manifest increases in plasma levels of total cholesterol, low-density lipoprotein-cholesterol (LDL-C), and triglycerides within the first 3–12 months following transplantation. Factors known to promote post-transplant hyperlipidemia include the use of corticosteroids, cyclosporine (interference with clearance and increased oxidizability of LDL), sirolimus (hypertriglyceridemia), and patient-specific causes of hyperlipidemia which contributed to their underlying heart disease. Hydroxymethylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors are the foundation of antilipid therapy following cardiac transplantation. Pravastatin is effective in lowering plasma cholesterol levels and is associated with a decreased incidence and progression of allograft coronary artery disease. All HMG-CoA reductase inhibitors except pravastatin are metabolized by the hepatic cytochrome P450 system which metabolizes cyclosporine, increasing the risk of myostitis when they are used in large dosages with cyclosporine. Simvastatin, atorvastatin and fluvastatin have been studied in heart transplant recipients. Gemfibrozil has proved effective in transplant recipients when there is isolated marked elevation of plasma triglyceride levels. When hyperlipidemia persists despite therapy, some benefit may result with conversion from cyclosporine to tacrolimus.

Although a definitive link between hyperlipidemia and allograft coronary disease has yet to be proven, available evidence points to abnormal lipid metabolism as part of the complex etiologic machinery driving the process of ‘chronic rejection’. Consensus exists within the transplant community that a HMG-CoA reductase inhibitor such as pravastatin, should be part of the routine post-transplant drug regimen, and persistent hyperlipidemia should be aggressively treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Costanzo MR, Naftel DC, Pritzker MR, et al. Heart transplant coronary artery disease detected by coronary angiography: a multi-institutional study of preoperative donor and recipient risk factors. J Heart Lung Transplant 1998; 17: 744–53

    PubMed  CAS  Google Scholar 

  2. Gao SZ, Schroeder JS, Alderman EL. Prevalence of accelerated coronary artery disease in heart transplant survivors: comparison of cyclosporine and azathioprine regimens. Circulation 1989; 90 Suppl. III: 744–53

    Google Scholar 

  3. Goldman L, Bennett JC, Drazen JM, et al. Disorders of lipid metabolism. In: Goldman L, Bennett JC, editors. Cecil textbook of medicine. Philadelphia, (PA): WB Saunders Company, 2000: 1090–100

    Google Scholar 

  4. Ross R, Glomset J. The pathogenesis of atherosclerosis. N Engl J Med 1976; 295: 369–77

    Article  PubMed  CAS  Google Scholar 

  5. Ross R, Glomset J. Atherosclerosis and the arterial smooth muscle cell. Science 1973; 180: 1332–9

    Article  PubMed  CAS  Google Scholar 

  6. Virchow R. Phlogose und thrombose in gefassystem. In: Meidinger Sohn, editor. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Berlin: Meidinger Sohn, 1856: 458

    Google Scholar 

  7. von Rokitansky C. A manual of pathological anatomy translated by Day. Philadelphia, (PA): Blanchard & Lea, The Sydenham Society 4, 1852

    Google Scholar 

  8. Steinberg D. Antioxidants and atherogenesis; a current assessment. Circulation 1991; 84: 1420–52

    Article  PubMed  CAS  Google Scholar 

  9. Steinberg D, Wirtzturm JL. Lipoproteins and atherogenesis: current concepts. JAMA 1990; 264: 3047–52

    Article  PubMed  CAS  Google Scholar 

  10. Meilahn EN, Ferrell RE. Naturally occurring low blood cholesterol and excess mortality. Coron Artery Dis 1993; 4: 843–53

    Article  PubMed  CAS  Google Scholar 

  11. Quinn MT. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low-density lipoproteins. Proc Natl Acad Sci U S A 1985; 82: 5949–53

    Article  PubMed  CAS  Google Scholar 

  12. Ginsberg HN, Goldberg IJ. Disorders of lipoprotein metabolism: Harrison’s principles of internal medicine. New York (NY): McGraw Hill Companies, 1998

    Google Scholar 

  13. Ballantyne CM, Radovancevic B, Farmer JA, et al. Hyperlipidemia after heart transplantation: report of a 6-year experience with treatment recommendations. J Am Coll Cardiol 1992; 19: 1315–21

    Article  PubMed  CAS  Google Scholar 

  14. Kirk JK, Dupuis RE. Approaches to the treatment of hyperlipidemia in the solid organ transplant recipient. Ann Pharmacother 1995; 29: 879–91

    PubMed  CAS  Google Scholar 

  15. Farmer JA, Ballantyne CM, Frazier OH, et al. Lipoprotein and apolipoprotein changes after cardiac transplantation. J Am Coll Cardiol 1991; 18: 926–30

    Article  PubMed  CAS  Google Scholar 

  16. Guijarro C, Massy ZA, Kasiske BL. Clinical correlation between renal allograft failure and hyperlipidemia. Kidney Int 1995; 48 Suppl. 52: S56–9

    Google Scholar 

  17. Drueke TB, Abdulmassih Z, Lacour B, et al. Atherosclerosis and lipid disorders after renal transplantation. Kidney Int 1991; 39 Suppl. 31: S24–8

    Google Scholar 

  18. Johnson MR. Transplant coronary disease: nonimmunologic risk factors. J Heart Lung Transplant 1992; 11: S124–32

    PubMed  CAS  Google Scholar 

  19. Kobashigawa J, Kasiake BL. Hyperlipidemia in solid organ transplantation. Transplantation 1997; 63: 331–8

    Article  PubMed  CAS  Google Scholar 

  20. Dasgupta A, Powell D, Saldana S, et al. Elevated lipid peroxidation products and depleted transferrin levels in the plasma of kidney transplant recipients. Life Sci 1990; 46: 67–72

    Article  PubMed  CAS  Google Scholar 

  21. Renlund DG, Bristow MR, Crandall BG. Hypercholesterolemia after heart transplantation; amelioration by corticosteroid-free maintenance immunosuppression. J Heart Lung Transplant 1989; 8: 214–9

    CAS  Google Scholar 

  22. Akhlaghi F, Jackson CH, Parameshwar J, et al. Risk factors for the development and progression of dyslipidemia after heart transplantation. Transplantation 2002; 73: 1258–64

    Article  PubMed  CAS  Google Scholar 

  23. Becker DM, Chamberlain B, Swant R, et al. Relationship between corticosteroid exposure and plasma lipid levels in heart transplant recipients. Am J Med 1988; 85: 632–8

    Article  PubMed  CAS  Google Scholar 

  24. Grundy SM. Second report of the expert panel on detection, evaluation and treatment of high blood cholesterol in adults. Circulation 1994; 89: 1329–445

    Google Scholar 

  25. Gurecki J, Warty V, Sanghvi A. The transport of cyclosporine in association with plasma lipoprotein in heart and liver transplant patients. Transplant Proc 1985; 17: 1997–2002

    PubMed  CAS  Google Scholar 

  26. Sgoutas D, Macmahon W, Love A, et al. Interaction of cyclosporine A with human lipoproteins. J Pharm Pharmacol 1986; 38: 583–8

    Article  PubMed  CAS  Google Scholar 

  27. Raine AE, Carter R, Mann JI, et al. Adverse effect of cyclosporine on plasma cholesterol in renal transplant recipients. Nephrol Dial Transplant 1988; 3: 458–63

    PubMed  CAS  Google Scholar 

  28. Apanay DC, Neylan JF, Ragab MS, et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. Transplantation 1994; 58(6): 663–9

    PubMed  CAS  Google Scholar 

  29. de Groen PC. Cyclosporine, low density lipoprotein and cholesterol. Mayo Clin Proc 1988; 63(10): 1012–21

    PubMed  Google Scholar 

  30. Kuster GM, Drexel H, Bleisch JA, et al. Relation of cyclosporine blood levels to adverse effects on lipoproteins. Transplantation 1994; 57: 1479–83

    PubMed  CAS  Google Scholar 

  31. Ost L. Impairment of prednisolone metabolism by cyclosporine treatment in renal graft recipients. Transplantation 1987; 44: 533–5

    Article  PubMed  CAS  Google Scholar 

  32. Taylor DO, Barr ML, Radovancevic B, et al. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant 1999; 18: 336–45

    Article  PubMed  CAS  Google Scholar 

  33. Hohage H, Arlt M, Bruckner D, et al. Effects of cyclosporine A and FK 506 on lipid metabolism and fibrinogen in kidney transplant recipients. Clin Transplant 1997; 11: 225–30

    PubMed  CAS  Google Scholar 

  34. Neal DA, Gimson AE, Gibbs P, et al. Beneficial effects of converting liver transplant recipients from cyclosporine to tacrolimus on blood pressure, serum lipids, and weight. Liver Transpl 2001; 7(6): 533–9

    Article  PubMed  CAS  Google Scholar 

  35. Trotter JF, Wachs ME, Trouillot TE, et al. Dyslipidemia during sirolimus therapy in liver transplant recipients occurs with concomitant cyclosporine but not tacrolimus. Liver Transpl 2001; 7(5): 401–8

    Article  PubMed  CAS  Google Scholar 

  36. Johnson C, Ahsan N, Gonwa T, et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation 2000; 69(5): 834–41

    Article  PubMed  CAS  Google Scholar 

  37. Manzarbeitia C, Reich DJ, Rothstein KD, et al. Tacrolimus conversion improves hyperlipidemic states in stable liver transplant recipients. Liver Transpl 2001; 7(2): 93–9

    Article  PubMed  CAS  Google Scholar 

  38. Canzanello VJ, Schwartz L, Taler SJ, et al. Evolution of cardiovascular risk after liver transplantation; a comparison of cyclosporine A and tacrolimus (FK506). Liver Transplant Surg 1997; 3: 1–9

    Article  CAS  Google Scholar 

  39. Abraham RT. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 1998; 10: 330–6

    Article  PubMed  CAS  Google Scholar 

  40. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253: 905–9

    Article  PubMed  CAS  Google Scholar 

  41. Wyeth-Ayerst Laboratories. TOR Inhibition: a new therapeutic pathway to Immunosuppression. Wyeth-Ayerst Laboratories, 2000

  42. Keogh A, Valantine H, Hunt S, et al. Predictors of proximal epicardial artery disease after heart transplantation [abstract]. J Heart Lung Transplant 1991; 10: 188

    Google Scholar 

  43. Miller LW. Transplant coronary artery disease [editorial]. J Heart Lung Transplant 1992; 11: S1–4

    PubMed  CAS  Google Scholar 

  44. Adams DH, Russell ME, Hancock WW, et al. Chronic rejection in experimental cardiac transplantation: studies in the Lewis-F344 model. Immunol Rev 1993; 134: 5–19

    Article  PubMed  CAS  Google Scholar 

  45. Cramer DV, Chapman FA, WuGD. Cardiac transplantation in the rat: II. alteration of the severity of donor graft arteriosclerosis by modulation of the host immune response. Transplantation 1990; 50: 554–8

    Article  PubMed  CAS  Google Scholar 

  46. Hayry P, Isoneimi H, Yilmaz S, et al. Chronic allograft rejection. Immunol Rev 1993; 134: 33–81

    Article  PubMed  CAS  Google Scholar 

  47. Alonso DR, Starek PK, Minick CR. Studies on the pathogenesis of atheroarteriosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia. Am J Pathol 1977; 87: 415–22

    PubMed  CAS  Google Scholar 

  48. Laden AMK. Experimental atherosclerosis in rat and rabbit cardiac allografts. Arch Pathol 1972; 93: 240–5

    PubMed  CAS  Google Scholar 

  49. Russell PS, Chase CM, Winn HJ, et al. Coronary atherosclerosis in transplanted mouse hearts: III. effects of recipient treatment with a monoclonal antibody to the interferon. Transplantation 1994; 57: 1367–71

    Article  PubMed  CAS  Google Scholar 

  50. Shi C, Russell ME, Bianchi C, et al. Murine model of accelerated transplant arteriosclerosis. Circ Res 1994; 75: 199–207

    Article  PubMed  CAS  Google Scholar 

  51. Minick CR, Murphy GE. Experimental induction of atheroarteriosclerosis by the synergy of allergic injury to arteries and lipid-rich diet. Am J Pathol 1973; 73: 265–300

    PubMed  CAS  Google Scholar 

  52. Chait A, Ross R, Albers JJ, et al. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci U S A 1980; 77: 4084–8

    Article  PubMed  CAS  Google Scholar 

  53. Valantine HA. Role of lipids in allograft vascular disease: a multicenter study of intimai thickening detected by intravascular ultrasound. J Heart Lung Transplant 1995; 14: S234–7

    PubMed  CAS  Google Scholar 

  54. Mehra MR, Ventura HO, Chambers R, et al. Predictive model to assess risk for cardiac allograft vasculopathy: an intravascular ultrasound study. J Am Coll Cardiol 1995; 26: 1537–44

    Article  PubMed  CAS  Google Scholar 

  55. Kobashigawa J, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333: 621–7

    Article  PubMed  CAS  Google Scholar 

  56. Wenke K, Meiser B, Thiey J, et al. Simvastatin reduces graft vessel disease and mortality after heart transplantation: a four year randomized trial. Circulation 1997; 96: 1398–402

    Article  PubMed  CAS  Google Scholar 

  57. Wenke K, Thiery J, Meiser B, et al. Long term simvastatin therapy for hypercholesterolemia in heart transplant patients. Z Kardiol 1995; 84: 130–6.

    PubMed  CAS  Google Scholar 

  58. Kobashigawa J, Moriguchi JD, Ro TK, et al. Atorvastatin for refractory hypercholesterolemia in heart transplant recipients [abstract]. J Am Coll Cardiol 1998; 31: 157A

    Article  Google Scholar 

  59. Poston RS, Billingham ME, Hyot E, et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation 1999; 100: 67–74

    Article  PubMed  CAS  Google Scholar 

  60. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary artery disease. Lancet 1994; 344: 1383–9

    Google Scholar 

  61. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333:1301–7

    Article  PubMed  CAS  Google Scholar 

  62. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9

    Article  PubMed  CAS  Google Scholar 

  63. Lewis SJ, Sacks FM, Mitchell JS, et al. Effect of pravastatin on cardiovascular events in women after myocardial infarction. J Am Coll Cardiol 1998; 32: 140–6

    Article  PubMed  CAS  Google Scholar 

  64. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. JAMA 1998; 279: 1615–22

    Article  PubMed  CAS  Google Scholar 

  65. Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) study group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349–57

    Article  Google Scholar 

  66. LaRosa JC, He J, Vupputuri S. Effects of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282: 2340–6

    Article  PubMed  CAS  Google Scholar 

  67. Post Coronary Bypass Graft Trial Investigators. The effects of aggressive lowering of low-density lipoprotein cholesterol and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. N Engl J Med 1997; 336: 153–62

    Article  Google Scholar 

  68. Pitt B, Waters D, Brown WV, et al. Aggressive lipid lowering therapy compared with angioplasty in stable coronary artery disease. N Engl J Med 1999; 341: 70–6

    Article  PubMed  CAS  Google Scholar 

  69. Schwartz GG, Olsson AG. Myocardial ischemia reduction with aggressive cholesterol lowering (MIRACL). Presented at the AHA Scientific Sessions 2000, Plenary Session XXII: Late breaking trials results; 2000 Nov

  70. Patel DN, Pagani FD, Koelling TM, et al. Safety and efficacy of atorvastatin in heart transplant recipients. J Heart Lung Transplant 2002; 21: 204–10

    Article  PubMed  Google Scholar 

  71. Magnani G, Carinci M, Magelli C, et al. Role of statins in the management of dyslipidemia after cardiac transplant: randomized controlled trial comparing the efficacy and the safety of atorvastatin with pravastatin. J Heart Lung Transplant 2000; 19: 1710–67

    Article  Google Scholar 

  72. Romano M, Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients: role of nitric oxide. J Investig Med 2000; 48(3): 183–9

    PubMed  CAS  Google Scholar 

  73. Igel M, Sudhop T, von Bergmann K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001; 57(5): 357–64

    Article  PubMed  CAS  Google Scholar 

  74. Park JW, Siekmeier R, Lattke P, et al. Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J Cardiovasc Pharmacol Ther 2001; 6(4): 351–61

    Article  PubMed  CAS  Google Scholar 

  75. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin/gemfibrozil combination therapy. JAMA 1990; 264: 71–5

    Article  PubMed  CAS  Google Scholar 

  76. Bermingham RP, Whitsitt TB, Smart ML, et al. Rhabdomyolysis in a patient receiving the combination of cerivastatin and gemfibrozil. Am J Health-Syst Pharm 2000; 57: 461–4

    PubMed  CAS  Google Scholar 

  77. Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998; 81: 368–9

    Article  PubMed  CAS  Google Scholar 

  78. Tal A, Rajeshawari M, Isley W. Rhabdomyolysis associated with simvastatin/gemfibrozil therapy. South Med J 1997; 90: 546–7

    Article  PubMed  CAS  Google Scholar 

  79. Keogh A, Day R, Critchley L, et al. The effect of food and cholestyramine on the absorption of cyclosporine in cardiac transplant recipients. Transplant Proc 1988; 20: 27–30

    PubMed  CAS  Google Scholar 

  80. Jensen RA, Lal SM, Diaz-Arias A, et al. Does cholestyramine interfere with cyclosporine absorption? a prospective study in renal transplant patients. ASAIOJ 1995; 41: 704–6

    Article  Google Scholar 

  81. McCune TR, Thacker LR, Peters TG, et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. Transplantation 1998; 65(1): 87–92

    Article  PubMed  CAS  Google Scholar 

  82. Park JW, Vermeltfoort M, Braun P, et al. Regression of transplant coronary artery disease during chronic HELP therapy: a case study. Atherosclerosis 1995; 115: 1–8

    Article  PubMed  CAS  Google Scholar 

  83. Friemann S, Feuring E, Padberg W, et al. Improvement of nephrotoxicity, hypertension, and lipid metabolism after conversion of kidney transplant recipients from cyclosporine to tacrolimus. Transplant Proc 1998; 30(4): 112140–2

    Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Kirklin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirklin, J.K., Benza, R.L., Rayburn, B.K. et al. Strategies for Minimizing Hyperlipidemia After Cardiac Transplantation. Am J Cordiovosc Drugs 2, 377–387 (2002). https://doi.org/10.2165/00129784-200202060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200202060-00003

Keywords

Navigation