Skip to main content
Log in

Exercise-Induced Asthma in Children

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Exercise-induced asthma (EIA) is a relatively common problem in children, but may not be recognized because children either do not report their symptoms, or avoid activities that cause it. Clarifying the diagnosis of EIA, in particular separating EIA from other causes of exertional dyspnea, is essential.

Treating EIA in children is challenging because of the nature of their physical activities, which are often not planned, and may be prolonged. Keeping children active is an important goal to ensure healthy physical and social development. Many children with EIA are well managed with an inhaled short-acting β2-adrenoceptor agonist before exercise or if symptoms develop. The approach to more troublesome EIA depends on whether the child has persistent asthma and requires better prevention, or the EIA is an isolated clinical problem. The options for treatment also depend on the timing, frequency, and duration of activity that induces EIA. Options include the addition of a cromone, a leukotriene modifier, an inhaled corticosteroid, or switching to use a long-acting β2-adrenoceptor agonist. The use of warm-up exercises has been shown to be helpful by using the refractory period but is not practical for most children with EIA. A final consideration for successful management of EIA in children is that the delivery of medication needs to be age-appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. Use of tradenames is for identification purposes only and does not imply endorsement.

References

  1. Joseph CL, Foxman B, Leickly FE, et al. Prevalence of possible undiagnosed asthma and associated morbidity among urban school children. J Pediatr 1996; 129(5): 735–42

    Article  PubMed  CAS  Google Scholar 

  2. Haby MM, Peat JK, Mellis CM, et al. An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur Respir J 1995; 8(5): 729–36

    PubMed  CAS  Google Scholar 

  3. Backer V, Ulrik CS. Bronchial responsiveness to exercise in a random sample of 494 children and adolescents from Copenhagen. Clin Exp Allergy 1992; 22(8): 741–7

    Article  PubMed  CAS  Google Scholar 

  4. Weiss ST, Tager IB, Weiss JW, et al. Airways responsiveness in a population sample of adults and children. Am Rev Respir Dis 1984; 129(6): 898–902

    PubMed  CAS  Google Scholar 

  5. Milgrom H, Taussig LM. Keeping children with exercise-induced asthma active. Pediatrics 1999; 104(3): E38

    Article  PubMed  CAS  Google Scholar 

  6. Randolph C. Exercise-induced asthma: update on pathophysiology, clinical diagnosis, and treatment. Curr Probl Pediatr 1997; 27(2): 53–77

    PubMed  CAS  Google Scholar 

  7. Boner AL, Spezia E, Piovesan P, et al. Inhaled formoterol in the prevention of exercise-induced bronchoconstriction in asthmatic children. Am J Respir Crit Care Med 1994; 149 (4 Pt 1): 935–9

    PubMed  CAS  Google Scholar 

  8. Mussaffi H, Springer C, Godfrey S. Increased bronchial responsiveness to exercise and histamine after allergen challenge in children with asthma. J Allergy Clin Immunol 1986; 77 (1 Pt 1): 48–52

    Article  PubMed  CAS  Google Scholar 

  9. Hofstra WB, Neijens HJ, Duiverman EJ, et al. Dose-responses over time to inhaled fluticasone propionate treatment of exercise- and methacholine-induced broncho-constriction in children with asthma. Pediatric Pulmonol 2000; 29(6): 415–23

    Article  CAS  Google Scholar 

  10. Bierman CW, Spiro SG, Petheram I. Characterization of the late response in exercise-induced asthma. J Allergy Clin Immunol 1984; 74(5): 701–6

    Article  PubMed  CAS  Google Scholar 

  11. Iikura Y, Inui H, Nagakura T, et al. Factors predisposing to exercise-induced late asthmatic responses. J Allergy Clin Immunol 1985; 75(2): 285–9

    Article  PubMed  CAS  Google Scholar 

  12. Zawadski DK, Lenner KA, McFadden ER. Effect of exercise on nonspecific airway reactivity in asthmatics. J Appl Physiol 1988; 64(2): 812–6

    PubMed  CAS  Google Scholar 

  13. Gauvreau GM, Ronnen GM, Watson RM, et al. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1302–7

    PubMed  CAS  Google Scholar 

  14. Godfrey S, Springer C, Bar-Yishay E, et al. Cut-off points defining normal and asthmatic bronchial reactivity to exercise and inhalation challenges in children and young adults. Eur Respir J 1999; 14(3): 659–68

    Article  PubMed  CAS  Google Scholar 

  15. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol 1984; 73 (5 Pt 2): 660–5

    Article  PubMed  CAS  Google Scholar 

  16. Anderson SD, Daviskas E. The mechanism of exercise-induced asthma is. J Allergy Clin Immunol 2000; 106(3): 453–9

    Article  PubMed  CAS  Google Scholar 

  17. Brannan JD, Koskela H, Anderson SD, et al. Responsiveness to mannitol in asthmatic subjects with exercise- and hyperventilation-induced asthma. Am J Respir Crit Care Med 1998; 158(4): 1120–6

    PubMed  CAS  Google Scholar 

  18. Anderson SD, Rodwell LT, Daviskas E, et al. The protective effect of nedocromil sodium and other drugs on airway narrowing provoked by hyperosmolar stimuli: a role for the airway epithelium? J Allergy Clin Immunol 1996; 98 (5 Pt 2): S124–34

    Article  PubMed  CAS  Google Scholar 

  19. McFadden ER, Nelson JA, Skowronski ME, et al. Thermally induced asthma and airway drying. Am J Respir Crit Care Med 1999; 160(1): 221–6

    PubMed  Google Scholar 

  20. Deal EC, McFadden ER, Ingram RH, et al. Role of respiratory heat exchange in production of exercise-induced asthma. J Appl Physiol 1979; 46(3): 467–75

    PubMed  Google Scholar 

  21. Lee TH, Anderson SD. Heterogeneity of mechanisms in exercise induced asthma. Thorax 1985; 40(7): 481–7

    Article  PubMed  CAS  Google Scholar 

  22. Waalkens HJ, Essen-Zandvliet EE, Gerritsen J, et al. The effect of an inhaled corticosteroid (budesonide) on exercise-induced asthma in children. Dutch CNSLD Study Group. Eur Respir J 1993; 6(5): 652–6

    PubMed  CAS  Google Scholar 

  23. McFadden ER. Exercise performance in the asthmatic. Am Rev Respir Dis 1984; 129 (2 Pt 2): S84–7

    PubMed  Google Scholar 

  24. Anderson SD, Silverman M, Konig P, et al. Exercise-induced asthma. Br J Dis Chest 1975; 69(1): 1–39

    Article  PubMed  CAS  Google Scholar 

  25. AAP Section on Allergy and Immunology, Section of Diseases of the Chest. Exercise and the asthmatic child. Pediatrics 1989; 84(2): 392–3

    Google Scholar 

  26. Ahrens RC, Smith GD. Albuterol: an adrenergic agent for use in the treatment of asthma pharmacology, pharmacokinetics and clinical use. Pharmacotherapy 1984; 4(3): 105–21

    PubMed  CAS  Google Scholar 

  27. Morgan DJ. Clinical pharmacokinetics of beta-agonists. Clin Pharmacokinet 1990; 18(4): 270–94

    Article  PubMed  CAS  Google Scholar 

  28. Henriksen JM, Agertoft L, Pedersen S. Protective effect and duration of action of inhaled formoterol and salbutamol on exercise-induced asthma in children. J Allergy Clin Immunol 1992; 89(6): 1176–82

    Article  PubMed  CAS  Google Scholar 

  29. Levison H, Reilly PA, Worsley GH. Spacing devices and metered-dose inhalers in childhood asthma. J Pediatr 1985; 107(5): 662–8

    Article  PubMed  CAS  Google Scholar 

  30. Pedersen S, Hansen OR, Fuglsang G. Influence of inspiratory flow rate upon the effect of a turbuhaler. Arch Dis Child 1990; 65(3): 308–10

    Article  PubMed  CAS  Google Scholar 

  31. Fuglsang G, Hertz B, Holm EB. No protection by oral terbutaline against exercise-induced asthma in children: a dose-response study. Eur Respir J 1993; 6(4): 527–30

    PubMed  CAS  Google Scholar 

  32. National Heart Lung and Blood Institute. Expert panel report 2: guidelines for the diagnosis and management of asthma. Bethesda (MD): National Institutes of Health, 1997. NIH publication no. 974051

    Google Scholar 

  33. National Heart Lung and Blood Institute. Global initiative for asthma: global strategy for asthma management and prevention. NHLBI/WHO workshop report. Bethesda (MD): National Institutes of Health, 1995. NIH publication no. 95-3659

    Google Scholar 

  34. The British Thoracic Society. The British guidelines on asthma management 1995: review and position statement. Thorax 1997; 52Suppl. 1: S1–20

    Google Scholar 

  35. Bisgaard H. Long-acting beta(2)-agonists in management of childhood asthma: a critical review of the literature. Pediatr Pulmonol 2000; 29(3): 221–34

    Article  PubMed  CAS  Google Scholar 

  36. Waldeck B. Some pharmacodynamic aspects on long-acting beta-adrenoceptor agonists. Gen Pharmacol 1996; 27(4): 575–80

    Article  PubMed  CAS  Google Scholar 

  37. Kallstrom BL, Sjoberg J, Waldeck B. The interaction between salmeterol and beta 2-adrenoceptor agonists with higher efficacy on guinea-pig trachea and human bronchus in vitro. Br J Pharmacol 1994; 113(3): 687–92

    Article  PubMed  CAS  Google Scholar 

  38. Johnson M, Butchers PR, Coleman RA, et al. The pharmacology of salmeterol. Life Sci 1993; 52(26): 2131–43

    Article  PubMed  CAS  Google Scholar 

  39. Barbato A, Cracco A, Tormena F, et al. The first 20 minutes after a single dose of inhaled salmeterol in asthmatic children. Allergy 1995; 50(6): 506–10

    Article  PubMed  CAS  Google Scholar 

  40. Ramage L, Lipworth BJ, Ingram CG, et al. Reduced protection against exercise induced bronchoconstriction after chronic dosing with salmeterol. Respir Med 1994; 88(5): 363–8

    Article  PubMed  CAS  Google Scholar 

  41. Simons FE, Soni NR, Watson WT, et al. Bronchodilator and bronchoprotective effects of salmeterol in young patients with asthma. J Allergy Clin Immunol 1992; 90(5): 840–6

    Article  PubMed  CAS  Google Scholar 

  42. Graff-Lonnevig V, Browaldh L. Twelve hours’bronchodilating effect of inhaled formoterol in children with asthma: a double-blind cross-over study versus salbutamol. Clin Exp Allergy 1990; 20(4): 429–32

    Article  PubMed  CAS  Google Scholar 

  43. von Berg A, Berdel D. Formoterol and salbutamol metered aerosols: comparison of a new and an established beta-2-agonist for their bronchodilating efficacy in the treatment of childhood bronchial asthma. Pediatr Pulmonol 1989; 7(2): 89–93

    Article  Google Scholar 

  44. van der Woude HJ, Winter TH, Aalbers R. Decreased bronchodilating effect of salbutamol in relieving methacholine induced moderate to severe bronchoconstriction during high dose treatment with long acting beta2 agonists. Thorax 2001; 56(7): 529–35

    Article  PubMed  Google Scholar 

  45. Daubjerg P, Nielsen KG, Skov M, et al. Duration of action of formoterol and salbutamol dry-powder inhalation in prevention of exercise-induced asthma in children. Acta Paediatr 1996; 85(6): 684–7

    Article  Google Scholar 

  46. Nielsen KG, Skov M, Klug B, et al. Flow-dependent effect of formoterol dry-powder inhaled from the aerolizer. Eur Respir J 1997; 10(9): 2105–9

    Article  PubMed  CAS  Google Scholar 

  47. Green CP, Price JF. Prevention of exercise induced asthma by inhaled salmeterol xinafoate. Arch Dis Child 1992; 67: 1014–17

    Article  PubMed  CAS  Google Scholar 

  48. Carlsen K-H, R0ksund O, Olsholt K, et al. Overnight protection by inhaled salmeterol on exercise-induced asthma in children. Eur Respir J 1995; 8(11): 1852–5

    Article  PubMed  CAS  Google Scholar 

  49. De Benedictis FM, Tuteri G, Pazzelli P, et al. Salmeterol in exercise-induced bronchoconstriction in asthmatic children: comparison of two doses. Eur Respir J 1996; 9(10): 2099–103

    Article  PubMed  Google Scholar 

  50. Nielsen KG, Auk IL, Bojsen K, et al. Clinical effect of Diskus dry-powder inhaler at low and high inspiratory flow-rates in asthmatic children. Eur Respir J 1998; 11(2): 350–4

    Article  PubMed  CAS  Google Scholar 

  51. Simons FE, Gerstner TV, Cheang MS. Tolerance to the bronchoprotective effect of salmeterol in adolescents with exercise-induced asthma using concurrent inhaled glucocorticoid treatment. Pediatrics 1997; 99(5): 655–9

    Article  PubMed  CAS  Google Scholar 

  52. Bartow RA, Brogden RN. Formoterol: an update of its pharmacological properties and therapeutic efficacy in the management of asthma [erratum appears in Drugs 1998 Apr; 55 (4): 517]. Drugs 1998; 55(2): 303–22

    Article  PubMed  CAS  Google Scholar 

  53. Gongora HC, Wisniewski AF, Tattersfield AE. A single-dose comparison of inhaled albuterol and two formulations of salmeterol on airway reactivity in asthmatic subjects. Am Rev Respir Dis 1991; 144 (3 Pt 1): 626–9

    Article  PubMed  CAS  Google Scholar 

  54. Adkins JC, McTavish D. Salmeterol: a review of its pharmacological properties and clinical efficacy in the management of children with asthma. Drugs 1997; 54(2): 331–54

    Article  PubMed  CAS  Google Scholar 

  55. Bhagat R, Kalra S, Swystun VA, et al. Rapid onset of tolerance to the bronchoprotective effect of salmeterol [erratum appears in Chest 1996 Feb; 109 (2): 592]. Chest 1995; 108(5): 1235–9

    Article  PubMed  CAS  Google Scholar 

  56. Tasche MJA, Uijen JHJM, Bernsen RMD, et al. Inhaled disodium cromoglycate (DSCG) as maintenace therapy in children with asthma: a systematic review. Thorax 2000; 55: 913–20

    Article  PubMed  CAS  Google Scholar 

  57. Spooner C, Rowe BH, Saunders LD. Nedocromil sodium in the treatment of exercise-induced asthma: a meta-analysis. Eur Respir J 2000; 16(1): 30–7

    Article  PubMed  CAS  Google Scholar 

  58. de Benedictis FM, Tuteri G, Pazzelli P, et al. Cromolyn versus nedocromil: duration of action in exercise-induced asthma in children. J Allergy Clin Immunol 1995; 96(4): 510–4

    Article  PubMed  CAS  Google Scholar 

  59. Schoeffel RE, Anderson SD, Lindsay DA. Sodium cromoglycate as a pressurised aerosol (vicrom) in exercise-induced asthma. Aust NZ J Med 1983; 13(2): 157–61

    Article  CAS  Google Scholar 

  60. Bundgaard A, Bach-Mortensen N, Schmidt A. The effect of sodium cromoglycate delivered by spinhaler and by pressurized aerosol on exercise-induced asthma in children. Clin Allergy 1982; 12(6): 601–5

    Article  PubMed  CAS  Google Scholar 

  61. Patel KR, Berkin KE, Kerr JW. Dose-response study of sodium cromoglycate in exercise-induced asthma. Thorax 1982; 37(9): 663–6

    Article  PubMed  CAS  Google Scholar 

  62. Patel KR, Kerr JW. The dose-duration effect of sodium cromoglycate in exerciseinduced asthma. Clin Allergy 1984; 14(1): 87–91

    Article  PubMed  CAS  Google Scholar 

  63. So SY, Yu DY. Sodium cromoglycate delivered by pressurized aerosol in the treatment of asthma. Clin Allergy 1981; 11(5): 479–82

    Article  PubMed  CAS  Google Scholar 

  64. Lal S, Malhotra SM, Gribben MD. Comparison of sodium cromoglycate pressurized aerosol and powder in the treatment of asthma. Clin Allergy 1982; 12(2): 197–201

    Article  PubMed  CAS  Google Scholar 

  65. Tullett WM, Tan KM, Wall RT, et al. Dose-response effect of sodium cromoglycate pressurised aerosol in exercise induced asthma. Thorax 1985; 40(1): 41–4

    Article  PubMed  CAS  Google Scholar 

  66. Konig P, Hordvik NL, Kreutz C. The preventive effect and duration of action of nedocromil sodium and cromolyn sodium on exercise-induced asthma (EIA) in adults. J Allergy Clin Immunol 1987; 79(1): 64–8

    Article  PubMed  CAS  Google Scholar 

  67. Kelly KD, Spooner CH, Rowe BH. Nedocromil sodium versus cromoglycate for the pre-treatment of exercise induced bronchoconstriction in asthma. Available in the Cochrane Library (database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 2. Oxford: Update Software, 2000: CD002169

    Google Scholar 

  68. Silverman M, Andrea T. Time course of effect of disodium cromoglycate on exercise-induced asthma. Arch Dis Child 1972; 47(253): 419–22

    Article  PubMed  CAS  Google Scholar 

  69. Woolley M, Anderson SD, Quigley BM. Duration of protective effect of terbutaline sulfate and cromolyn sodium alone and in combination on exercise-induced asthma. Chest 1990; 97(1): 39–45

    Article  PubMed  CAS  Google Scholar 

  70. Finnerty JP, Wood-Baker R, Thomson H, et al. Role of leukotrienes in exerciseinduced asthma: inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 1992; 145 (4 Pt 1): 746–9

    PubMed  CAS  Google Scholar 

  71. Selvadurai H, Mellis C. Antileukotriene drugs in childhood asthma: what is their place in therapy? Paediatr Drugs 2000; 2(5): 367–72

    Article  PubMed  CAS  Google Scholar 

  72. Massie J. Asthma in children: optimising therapy. Aust Fam Physician 1999; 28(2): 107–11

    PubMed  CAS  Google Scholar 

  73. Spector SL, Smith LJ, Glass M. Effects of 6 weeks of therapy with oral doses of ICI 204,219, a leukotriene D4 receptor antagonist, in subjects with bronchial asthma. ACCOLATE Asthma Trialists Group. Am J Respir Crit Care Med 1994; 150(3): 618–23

    PubMed  CAS  Google Scholar 

  74. Israel E, Cohn J, Dube L, et al. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma: a randomized controlled trial. Zileuton Clinical Trial Group. JAMA 1996; 275(12): 931–6

    Article  PubMed  CAS  Google Scholar 

  75. Reiss TF, Chervinsky P, Dockhorn RJ, et al. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 1998; 158(11): 1213–20

    Article  PubMed  CAS  Google Scholar 

  76. Knorr B, Matz J, Bernstein JA, et al. Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. Pediatric Montelukast Study Group. JAMA 1998; 279(15): 1181–6

    Article  PubMed  CAS  Google Scholar 

  77. Becker A. Leukotriene receptor antagonists: efficacy and safety in children with asthma. Pediatr Pulmonol 2000; 30(2): 183–6

    Article  PubMed  CAS  Google Scholar 

  78. Leff JA, Busse WW, Pearlman D, et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 1998; 339(3): 147–52

    Article  PubMed  CAS  Google Scholar 

  79. Kemp JP, Dockhorn RJ, Shapiro GG, et al. Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J Pediatr 1998; 133(3): 424–8

    Article  PubMed  CAS  Google Scholar 

  80. Coreno A, Skowronski M, Kotaru C, et al. Comparative effects of long-acting beta2-agonists, leukotriene receptor antagonists, and a 5-lipoxygenase inhibitor on exercise-induced asthma. J Allergy Clin Immunol 2000; 106(3): 500–6

    Article  PubMed  CAS  Google Scholar 

  81. Pearlman DS, Ostrom NK, Bronsky EA, et al. The leukotriene D4-receptor antagonist zafirlukast attenuates exercise-induced bronchoconstriction in children. J Pediatr 1999; 134(3): 273–9

    Article  PubMed  CAS  Google Scholar 

  82. Villaran C, O’Neill SJ, Helbling A, et al. Montelukast versus salmeterol in patients with asthma and exercise-induced bronchoconstriction. Montelukast/Salmeterol Exercise Study Group. J Allergy Clin Immunol 1999; 104 (3 Pt 1): 547–53

    Article  PubMed  CAS  Google Scholar 

  83. Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction: a randomized, double-blind trial. Exercise Study Group. Ann Intern Med 2000; 132(2): 97–104

    PubMed  CAS  Google Scholar 

  84. Meltzer SS, Hasday JD, Cohn J, et al. Inhibition of exercise-induced bronchospasm by zileuton: a 5-lipoxygenase inhibitor. Am J Respir Crit Care Med 1996; 153(3): 931–5

    PubMed  CAS  Google Scholar 

  85. Knorr B, Larson P, Nguyen HH, et al. Montelukast dose selection in 6- to 14-year-olds: comparison of single-dose pharmacokinetics in children and adults. J Clin Pharmacol 1999; 39(8): 786–93

    Article  PubMed  CAS  Google Scholar 

  86. Weinberger M, Hendeles L, Ahrens R. Clinical pharmacology of drugs used for asthma. Pediatr Clin North Am 1981; 28(1): 47–75

    PubMed  CAS  Google Scholar 

  87. Freezer NJ, Croasdell H, Doull IJ, et al. Effect of regular inhaled beclomethasone on exercise and methacholine airway responses in school children with recurrent wheeze. Eur Respir J 1995; 8(9): 1488–93

    PubMed  CAS  Google Scholar 

  88. Venge P, Henriksen J, Dahl R. Eosinophils in exercise-induced asthma. J Allergy Clin Immunol 1991; 88(5): 699–704

    Article  PubMed  CAS  Google Scholar 

  89. Yoshikawa T, Shoji S, Fujii T, et al. Severity of exercise-induced bronchoconstriction is related to airway eosinophilic inflammation in patients with asthma. Eur Respir J 1998; 12(4): 879–84

    Article  PubMed  CAS  Google Scholar 

  90. Henriksen JM, Dahl R. Effects of inhaled budesonide alone and in combination with low-dose terbutaline in children with exercise-induced asthma. Am Rev Respir Dis 1983; 128(6): 993–7

    PubMed  CAS  Google Scholar 

  91. Pedersen S, Hansen OR. Budesonide treatment of moderate and severe asthma in children: a dose-response study. J Allergy Clin Immunol 1995; 95 (1 Pt 1): 29–33

    Article  PubMed  CAS  Google Scholar 

  92. Jonasson G, Carlsen KH, Blomqvist P. Clinical efficacy of low-dose inhaled budesonide once or twice daily in children with mild asthma not previously treated with steroids. Eur Respir J 1998; 12(5): 1099–104

    Article  PubMed  CAS  Google Scholar 

  93. Jonasson G, Carlsen KH, Hultquist C. Low-dose budesonide improves exercise-induced bronchospasm in school children. Pediatr Allergy Immunol 2000; 11(2): 120–5

    Article  PubMed  CAS  Google Scholar 

  94. Laursen LC, Johannesson N, Weeke B. Effects of enprofylline and theophylline on exercise-induced asthma. Allergy 1985; 40(7): 506–9

    Article  PubMed  CAS  Google Scholar 

  95. Jones RS, Wharton MJ, Buston MH. The place of physical exercise and broncho-dilator drugs in the assessment of the asthmatic child. Arch Dis Child 1963; 38: 539–41

    Article  PubMed  CAS  Google Scholar 

  96. Ellis EF. Inhibition of exercise-induced asthma by theophylline. J Allergy Clin Immunol 1984; 73 (5 Pt 2): 690–2

    Article  PubMed  CAS  Google Scholar 

  97. Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329(2): 90–5

    Article  PubMed  CAS  Google Scholar 

  98. Shimizu T, Mochizuki H, Shigeta M, et al. Effect of inhaled indomethacin on exercise-induced bronchoconstriction in children with asthma. Am J Respir Crit Care Med 1997; 155(1): 170–3

    PubMed  CAS  Google Scholar 

  99. Patel KR. The effect of calcium antagonist, nifedipine in exercise-induced asthma. Clin Allergy 1981; 11(5): 429–32

    Article  PubMed  CAS  Google Scholar 

  100. Patel KR. Calcium antagonists in exercise-induced asthma. BMJ (Clin Res Ed) 1981; 282(6268): 932–3

    Article  CAS  Google Scholar 

  101. Bianco S, Vaghi A, Robuschi M, et al. Prevention of exercise-induced broncho-constriction by inhaled frusemide. Lancet 1988; II(8605): 252–5

    Article  Google Scholar 

  102. McNeill RS, Nairn JR, Millar JS, et al. Exercise-induced asthma. Q J Med 1966; 35(137): 55–67

    PubMed  CAS  Google Scholar 

  103. Edmunds AT, Tooley M, Godfrey S. The refractory period after exercise-induced asthma: its duration and relation to the severity of exercise. Am Rev Respir Dis 1978; 117(2): 247–54

    PubMed  CAS  Google Scholar 

  104. Schnall RP, Landau LI. Protective effects of repeated short sprints in exercise-induced asthma. Thorax 1980; 35(11): 828–32

    Article  PubMed  CAS  Google Scholar 

  105. Reiff DB, Choudry NB, Pride NB, et al. The effect of prolonged submaximal warm-up exercise on exercise-induced asthma. Am Rev Respir Dis 1989; 139(2): 479–84

    Article  PubMed  CAS  Google Scholar 

  106. Massie RJ, Mellis CM. The economic aspects of drug delivery in asthma. Pharmacoeconomics 1997; 11(5): 398–407

    Article  PubMed  CAS  Google Scholar 

  107. Gillies J. Overview of delivery system issues in pediatric asthma. Pediatr Pulmonol Suppl 1997; 15: 55–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr Ric Roberts for reviewing the manuscript and Dr Sandra Anderson for her extensive and helpful comments when peer reviewing the manuscript. The author was supported by a part time career grant from the Murdoch Children’s Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Massie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massie, J. Exercise-Induced Asthma in Children. Pediatr-Drugs 4, 267–278 (2002). https://doi.org/10.2165/00128072-200204040-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200204040-00006

Keywords

Navigation