Skip to main content
Log in

Methicillin-Resistant Staphylococcus Aureus

Impact on Dermatology Practice

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) emerged in the 1960s and is now commonly seen in hospitals, clinics and, since the mid-1990s, the community. Risk factors for the acquisition of MRSA include chronic dermatoses, underlying medical illnesses, attending healthcare facilities, use of prescription antibacterials, surgery, intravenous lines, hospitalization in an intensive care unit, and proximity to patients colonized with MRSA. Recent community-associated strains often occur in patients without these risk factors. Staphylococci are readily spread from person to person and readily contaminate the environment. Infection control measures thus involve identifying the infected patients, separating them from other non-infected patients, cleaning of the environment and, most important of all, scrupulous attention to hand hygiene. Alcoholic antiseptic hand rubs offer an alternative to antiseptic hand washes and increase compliance. Treatment of MRSA skin infections is challenging. Topical agents such as mupirocin or fusidic acid can be used, but the organisms often become resistant. Systemic therapy involves non-β-lactams. Parenteral treatment is generally with glycopeptides such as vancomycin; oral therapy is more complex. Monotherapy with quinolones, rifampin (rifampicin), and fusidic acid often results in the development of resistance and so, if any of these agents are chosen it should be in combination. There are no data on combination therapy, although rifampin-containing combinations are often chosen. Fourth-generation quinolones and linezolid are expensive but promising alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV

Similar content being viewed by others

Notes

  1. The American Academy of Dermatology Association Practice Management group guidelines are available from the American Academy of Dermatology, PO Box 4014, Schaumburg, IL 60168-4014, USA, as well as on the Internet (http://www.aadassociation.org/Guidelines/officesurgical1.html).

References

  1. Jevons MP. “Celbenin”-resistant staphylococci. BMJ 1961; 1: 124–5

    Google Scholar 

  2. Herold BC, Immergluck LC, Maranan MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998; 279 (8): 593–8

    PubMed  CAS  Google Scholar 

  3. Udo EE, Pearman JW, Grubb WB. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 1993; 25 (2): 97–108

    PubMed  CAS  Google Scholar 

  4. Hiramatsu K, Hanaki H, Ino T, et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997; 40 (1): 135–6

    PubMed  CAS  Google Scholar 

  5. Kirby WW. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944; 99: 452–3

    PubMed  CAS  Google Scholar 

  6. Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet 1948; I: 641–4

    Google Scholar 

  7. Thompson RL, Cabezudo I, Wenzel RP. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. Ann Intern Med 1982; 97 (3): 309–17

    PubMed  CAS  Google Scholar 

  8. Strausbaugh LJ, Jacobson C, Sewell DL, et al. Methicillin-resistant Staphylococcus aureus in extended-care facilities: experiences in a Veterans’ Affairs nursing home and a review of the literature. Infect Control Hosp Epidemiol 1991; 12 (1): 36–45

    PubMed  CAS  Google Scholar 

  9. Strausbaugh LJ, Jacobson C, Yost T. Meticillin-resistant Staphylococcus aureus in a nursing home and affiliated hospital: a four-year perspective. Infect Control Hosp Epidemiol 1993; 14 (6): 331–6

    PubMed  CAS  Google Scholar 

  10. Barrett FF, McGehee RFJ, Finland M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N Engl J Med 1968; 279 (9): 441–8

    PubMed  CAS  Google Scholar 

  11. Rountree PM, Beard MA. Hospital strains of Staphylococcus aureus, with particular reference to methicillin-resistant strains. Med J Aust 1968; 2 (26): 1163–8

    PubMed  CAS  Google Scholar 

  12. Perceval A, McLean AJ, Wellington CV. Emergence of gentamicin resistance in Staphylococcus aureus [letter]. Med J Aust 1976; 2 (2): 74

    PubMed  CAS  Google Scholar 

  13. Crossley K, Landesman B, Zaske D. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides: II. Epidemiologic studies. J Infect Dis 1979; 139 (3): 280–7

    PubMed  CAS  Google Scholar 

  14. Price EH, Brain A, Dickson JA. An outbreak of infection with a gentamicin and methicillin- resistant Staphylococcus aureus in a neonatal unit. J Hosp Infect 1980; 1 (3): 221–8

    PubMed  CAS  Google Scholar 

  15. Givney R, Vickery A, Holliday A, et al. Evolution of an endemic methicillin-resistant Staphylococcus aureus population in an Australian hospital from 1967 to 1996. J Clin Microbiol 1998; 36 (2): 552–6

    PubMed  CAS  Google Scholar 

  16. Shanson DC, Kensit JC, Duke R. Outbreak of hospital infection with a strain of Staphylococcus aureus resistant to gentamicin and methicillin. Lancet 1976; II (7999): 1347–8

    Google Scholar 

  17. Speller DC, Raghunath D, Stephens M, et al. Epidemic infection by a gentamicing-resistant Staphyloccocus aureus in three hospitals. Lancet 1976; 1: 464–6

    PubMed  CAS  Google Scholar 

  18. Crossley K, Loesch D, Landesman B, et al. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides: I. clinical studies. J Infect Dis 1979; 139: 273–9

    PubMed  CAS  Google Scholar 

  19. Hone R, Cafferkey M, Keane CT, et al. Bacteremia in Dublin due to gentamicin-resistant Staphylococcus aureus. J Hosp Infect 1981; 2 (2): 119–26

    PubMed  CAS  Google Scholar 

  20. Craven DE, Reed C, Kollisch N, et al. A large outbreak of infections caused by a strain of Staphylococcus aureus resistant to oxacillin and aminoglycosides. Am J Med 1981; 71 (7): 53–8

    PubMed  CAS  Google Scholar 

  21. Gedney J, Lacey RW. Properties of methicillin-resistant staphylococci now endemic in Australia. Med J Aust 1982; 1 (11): 448–50

    PubMed  CAS  Google Scholar 

  22. Rosdahl VT, Knudsen AM. The decline of methicillin resistance among Danish Staphylococcus aureus strains. Infect Control Hosp Epidemiol 1991; 12 (2): 83–8

    PubMed  CAS  Google Scholar 

  23. Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001; 7 (2): 178–82

    PubMed  CAS  Google Scholar 

  24. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339 (8): 520–32

    PubMed  CAS  Google Scholar 

  25. Coombs GW. Symposia G. NORSA and MORSA in the Community. Epidemiology: the AGAR Data. Antimicrobials 2002 Australian Society for Antimicrobials 3rd Annual Scientific Meeting; 2002 Feb 28-Mar 2; Sydney, 3. Melbourne: International Management Convention Management Services, 2002

  26. Anonymous. Epidemic methicillin Staphylococcus aureus resistant in 1993. Commun Dis Rep CDR Wkly 1994; 4 (4): 17

    Google Scholar 

  27. Townsend DE, Ashdown N, Bradley JM, et al. “Australian” methicillin-resistant Staphylococcus aureus in a London hospital? Med J Aust 1984; 141 (6): 339–40

    PubMed  CAS  Google Scholar 

  28. Cookson BD, Phillips I. Epidemic methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1988; 21 Suppl. C: 57–65

    PubMed  Google Scholar 

  29. Methicillin-resistant Staphylococcus aureus (MRSA). Commun Dis Rep 1992; 2: 2

    Google Scholar 

  30. Richardson JF, Reith S. Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J Hosp Infect 1993; 25 (1): 45–52

    PubMed  CAS  Google Scholar 

  31. Cox RA, Conquest C, Mallaghan C, et al. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J Hosp Infect 1995; 29 (2): 87–106

    PubMed  CAS  Google Scholar 

  32. Hori S, Sunley R, Tami A, et al. The Nottingham population study: prevalence of MRSA among the elderly in a university hospital. J Hosp Infect 2002; 50 (1): 25–9

    PubMed  CAS  Google Scholar 

  33. Johnson AP, Aucken HM, Cavendish S, et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteremia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother 2001; 48 (1): 143–4

    PubMed  CAS  Google Scholar 

  34. Anonymous. Survey of non-multiresistant and multiresistant MRSA, July 2000. LabLink 2001; 8 (2): 22–23

    Google Scholar 

  35. Pearman JW, Coombs GW, Grubb WB, et al. A British epidemic strain of methicillin-resistant Staphylococcus aureus (UK EMRSA-15) in Western Australia [letter]. Med J Aust 2001; 174 (12): 662

    PubMed  CAS  Google Scholar 

  36. Heffernan H, Davies H, Brett M. The recent epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand [abstract no. PP10.5]. Microbiology Australia: Australian Society for Microbiology 2000 Annual Scientific Meeting and Exhibition. Cairns: Australian Society for Microbiology, 2000: A84

  37. Aubry-Damon H, Legrand P, Brun-Buisson C, et al. Reemergence of gentamicin-susceptible strains of methicillin-resistant Staphylococcus aureus: roles of an infection control program and changes in aminoglycoside use. Clin Infect Dis 1997; 25 (3): 647–53

    PubMed  CAS  Google Scholar 

  38. Pournaras S, Slavakis A, Polyzou A, et al. Nosocomial spread of an unusual methicillin-resistant Staphylococcus aureus clone that is sensitive to all non-β-lactam antibiotics, including tobramycin. J Clin Microbiol 2001; 39 (2): 779–81

    PubMed  CAS  Google Scholar 

  39. Saravolatz LD, Markowitz N, Arking L, et al. Methicillin-resistant Staphylococcus aureus: epidemiologic observations during a community-acquired outbreak. Ann Intern Med 1982; 96 (1): 11–6

    PubMed  CAS  Google Scholar 

  40. Levine DP, Cushing RD, Jui J, et al. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis in the Detroit Medical Center. Ann Intern Med 1982; 97 (3): 330–8

    PubMed  CAS  Google Scholar 

  41. Taylor G, Kirkland T, Kowalewska-Grochowska K, et al. A multistrain cluster of methicillin-resistant Staphylococcus aureus based in a native community. Can J Infect Dis 1990; 1: 121–6

    PubMed  CAS  Google Scholar 

  42. Maguire GP, Arthur AD, Boustead PJ, et al. Clinical experience and outcomes of community-acquired and nosocomial methicillin-resistant Staphylococcus aureus in a northern Australian hospital. J Hosp Infect 1998; 38 (4): 273–81

    PubMed  CAS  Google Scholar 

  43. Collignon P, Gosbell I, Vickery A, et al. Community-acquired meticillin [sic]-resistant Staphylococcus aureus in Australia: Australian Group on Antimicrobial Resistance. Lancet 1998; 352 (9122): 145–6

    PubMed  CAS  Google Scholar 

  44. Berman DS, Eisner W, Kreiswirth B. Community-acquired methicillin-resistant Staphylococcus aureus infection. N Engl J Med 1993; 329 (25): 1896

    PubMed  CAS  Google Scholar 

  45. Dufour P, Gillet Y, Bes M, et al. Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine Leukocidin. Clin Infect Dis 2002; 35: 819–24

    PubMed  CAS  Google Scholar 

  46. Cookson BD. Methicillin-resistant Staphylococcus aureus in the community: new battlefronts, or are the battles lost? Infect Control Hosp Epidemiol 2000; 21 (6): 398–403

    PubMed  CAS  Google Scholar 

  47. Rosenberg J. Methicillin-resistant Staphylococcus aureus (MRSA) in the community: who’s watching? Lancet 1995; 346 (8968): 132–3

    PubMed  CAS  Google Scholar 

  48. Price MF, McBride ME, Wolf Jr JE. Prevalence of methicillin-resistant Staphylococcus aureus in a dermatology outpatient population. South Med J 1998; 91 (4): 369–71

    PubMed  CAS  Google Scholar 

  49. Nishijima S, Namura S, Mitsuya K, et al. The incidence of isolation of methicillin-resistant Staphylococcus aureus (MRSA) strains from skin infections during the past three years (1989–1991). J Dermatol 1993; 20 (4): 193–7

    PubMed  CAS  Google Scholar 

  50. Tenover FC, Biddle JW, Lancaster MV. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg Infect Dis 2001; 7 (2): 327–32

    PubMed  CAS  Google Scholar 

  51. Ward PB, Johnson PD, Grabsch EA, et al. Treatment failure due to methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin. Med J Aust 2001; 175 (9): 480–3

    PubMed  CAS  Google Scholar 

  52. Anonymous. Staphylococcus aureus resistant to vancomycin: United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51 (26): 565–567

    Google Scholar 

  53. Anonymous. Interim guidelines for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin. Morbidity and Mortality Weekly Report 1997; 48 (27): 626–628

    Google Scholar 

  54. Goetz A, Posey K, Fleming J, et al. Methicillin-resistant Staphylococcus aureus in the community: a hospital-based study. Infect Control Hosp Epidemiol 1999; 20 (10): 689–91

    PubMed  CAS  Google Scholar 

  55. Boyce JM. Methicillin-resistant Staphylococcus aureus: detection, epidemiology, and control measures. Infect Dis Clin North Am 1989; 3 (4): 901–13

    PubMed  CAS  Google Scholar 

  56. Wenzel RP, Nettleman MD, Jones RN, et al. Methicillin-resistant Staphylococcus aureus: implications for the 1990s and effective control measures. Am J Med 1991; 91 Suppl. 3B: 221S-7S

    Google Scholar 

  57. Haley RW, Cushion NB, Tenover FC, et al. Eradication of endemic methicillin-resistant Staphylococcus aureus infections from a neonatal intensive care unit. J Infect Dis 1995; 171 (3): 614–24

    PubMed  CAS  Google Scholar 

  58. Weber DJ, Rutala WA. Environmental issues and nosocomial infections. In: Wenzel RP, editor. Prevention and control of nosocomial infections. Baltimore (MD): Williams and Wilkins, 1993: 420–49

    Google Scholar 

  59. Mayhall CG. Surgical infections including burns. In: Wenzel RP, editor. Prevention and control of nosocomial infections. Baltimore (MD): Williams and Wilkins, 1993: 614–64

    Google Scholar 

  60. Jernigan JA, Titus MG, Groschel DH, et al. Effectiveness of contact isolation during a hospital outbreak of methicillin-resistant Staphylococcus aureus. Am J Epidemiol 1996; 143 (5): 496–504

    PubMed  CAS  Google Scholar 

  61. Frenay HM, Vandenbroucke-Grauls CM, Molkenboer MJ, et al. Long-term carriage and transmission of methicillin-resistant Staphylococcus aureus after discharge from hospital. J Hosp Infect 1992; 22: 207–15

    PubMed  CAS  Google Scholar 

  62. Saraglou C, Cromer M, Bisno AL. Methicillin-resistant Staphylococcus aureus: interstate spread of nosocomial infections with emergence of gentamicin-methicillin resistant strains. Infect Control 1980; 1: 81–9

    Google Scholar 

  63. Hsu CCS, Macaluso CP, Special L, et al. High rate of methicillin resistance of Staphylococcus aureus isolated from nursing home patients. Arch Intern Med 1988; 148: 569–70

    PubMed  CAS  Google Scholar 

  64. Layton MC, Hierholzer Jr WJ, Patterson JE. The evolving epidemiology of methicillin-resistant Staphylococcus aureus at a university hospital. Infect Control Hosp Epidemiol 1995; 16 (1): 12–7

    PubMed  CAS  Google Scholar 

  65. Haley RW, Hightower AW, Khabbaz RF, et al. The emergence of methicillin-resistant Staphylococcus aureus infections in United States hospitals: possible role of the house staff-patient transfer circuit. Ann Intern Med 1982; 97: 297–308

    PubMed  CAS  Google Scholar 

  66. Mortimer EAJ, Lipsitz PJ, Wolinsky E, et al. Transmission of staphylococci between newborns. Importance of hands to personnel. Am J Dis Child 1962; 104: 289–95

    PubMed  Google Scholar 

  67. von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344 (1): 11–6

    PubMed  CAS  Google Scholar 

  68. Boyce JM, Landry M, Deetz TR, et al. Epidemiologic studies of an outbreak of nosocomial methicillin-resistant Staphylococcus aureus infections. Infect Control 1981; 2: 110–6

    PubMed  CAS  Google Scholar 

  69. Marples RR, Cooke EM. Current problems with methicillin-resistant Staphylococcus aureus. J Hosp Infect 1988; 11: 381–92

    PubMed  CAS  Google Scholar 

  70. Steere AC, Mallison GF. Handwashing practices for the prevention of nosocomial infections. Ann Intern Med 1975; 83: 683–90

    PubMed  CAS  Google Scholar 

  71. Albert RK, Condie F. Handwashing patterns in medical intensive care units. N Engl J Med 1981; 304: 1465–9

    PubMed  CAS  Google Scholar 

  72. Cox RA, Conquest C. Strategies for the management of healthcare staff colonized with epidemic methicillin-resistant Staphylococcus aureus. J Hosp Infect 1997; 35 (2): 117–27

    PubMed  CAS  Google Scholar 

  73. Heffernan H, Davies H. Epidemiology of multiresistant methicillin resistant Staphylococcus aureus, January-June 2000. LabLink 2000; 7: 24–7

    Google Scholar 

  74. Walsh TJ, Vlahov D, Hansen SL, et al. Prospective microbiologic surveillance in control of nosocomial methicillin-resistant Staphylococcus aureus. Infect Control 1987; 8 (1): 7–14

    PubMed  CAS  Google Scholar 

  75. Layton MC, Perez M, Heald P, et al. An outbreak of mupirocin-resistant Staphylococcus aureus on a dermatology ward associated with an environmental reservoir. Infect Control Hosp Epidemiol 1993; 14 (7): 369–75

    PubMed  CAS  Google Scholar 

  76. Rutala WA, Katz EBS, Sherertz RJ, et al. Environmental study of a methicillin-resistant Staphylococcus aureus epidemic in a burn unit. J Clin Microbiol 1983; 18: 683–8

    PubMed  CAS  Google Scholar 

  77. Peacock JEJ, Marsik FJ, Wenzel RP. Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med 1980; 93: 526–32

    PubMed  Google Scholar 

  78. Farrell AM, Shanson DC, Ross JS, et al. An outbreak of methicillin-resistant Staphylococcus aureus (MRSA) in a dermatology day-care unit. Clin Exp Dermatol 1998; 23: 249–53

    PubMed  CAS  Google Scholar 

  79. Hill RL, Duckworth GJ, Casewell MW. Elimination of nasal carriage of methicillin-resistant Staphylococcus aureus with mupirocin during a hospital outbreak. J Antimicrob Chemother 1988; 22: 377–84

    PubMed  CAS  Google Scholar 

  80. Boyce JM. MRSA patients: proven methods to treat colonization and infection. J Hosp Infect 2001; 48 Suppl. A: S9–14

    Google Scholar 

  81. American Academy of Dermatology. Guidelines of care for office surgical facilities [online]. Available from URL: http://www.aadassociation.org/Guidelines/officesurgical1.html [Accessed 2004 Jun 16]

  82. Girou E, Azar J, Wolkenstein P, et al. Comparison of systematic versus selective screening for methicillin-resistant Staphylococcus aureus carriage in a high-risk dermatology ward. Infect Control Hosp Epidemiol 2000; 21: 583–7

    PubMed  CAS  Google Scholar 

  83. Anonymous. Guideline for isolation precautions in hospitals: part II. Recommendations for isolation precautions in hospitals. Hospital Infection Control Practices Advisory Committee. Am J Infect Control 1996; 24: 32–52

    Google Scholar 

  84. Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene: Infection Control Programme. Lancet 2000; 356 (9238): 1307–12

    PubMed  CAS  Google Scholar 

  85. Semret M, Miller MA. Topical mupirocin for eradication of MRSA colonization with mupirocin-resistant strains. Infect Control Hosp Epidemiol 2001; 22: 578–80

    PubMed  CAS  Google Scholar 

  86. Vasquez JE, Walker ES, Franzus BW, et al. The epidemiology of mupirocin resistance among methicillin-resistant Staphylococcus aureus at a Veterans’ Affairs hospital. Infect Control Hosp Epidemiol 2000; 21 (7): 459–64

    PubMed  CAS  Google Scholar 

  87. Caelli M, Porteous J, Carson CF, et al. Tea tree oil as an alternative topical decolonization agent for methicillin-resistant Staphylococcus aureus. J Hosp Infect 2000; 46: 236–7

    PubMed  CAS  Google Scholar 

  88. Dillon Jr HC. Topical and systemic therapy for pyodermas. Int J Dermatol 1980; 19: 443–51

    PubMed  Google Scholar 

  89. McAnally TP, Lewis MR, Brown DR. Effect of rifampin and bacitracin on nasal carriers of Staphylococcus aureus. Antimicrob Agents Chemother 1984; 25: 422–6

    PubMed  CAS  Google Scholar 

  90. Winkleman W, Gratton D. Topical antibacterials. Clin Dermatol 1989; 7: 156–62

    Google Scholar 

  91. Spelman D. Fusidic acid in skin and soft tissue infections. Int J Antimicrob Agents 1999; 12 Suppl. 2: S59–66

    Google Scholar 

  92. Weston VC, Boswell TC, Finch RG, et al. Fusidic acid cream for impetigo: emergence of resistance to fusidic acid limits its use [commentary]. BMJ 2002; 324 (7350): 1394

    PubMed  Google Scholar 

  93. Peeters KA, Mascini EM, Blok HE, et al. Increase in rate of resistance to fusidic acid among Staphylococcus aureus isolates from patients admitted with atopic dermatitis [in Dutch]. Ned Tijdschr Geneeskd 2002; 146: 2100–1

    PubMed  CAS  Google Scholar 

  94. Ravenscroft JC, Layton A, Barnham M. Observations on high levels of fusidic acid resistant Staphylococcus aureus in Harrogate, North Yorkshire, UK. Clin Exp Dermatol 2000; 25 (4): 327–30

    PubMed  CAS  Google Scholar 

  95. Turnidge JD, Nimmo GR, Francis G. Evolution of resistance in Staphylococcus aureusin Australian teaching hospitals: Australian Group on Antimicrobial Resistance (AGAR). Med J Aust 1996; 164 (2): 68–71

    PubMed  CAS  Google Scholar 

  96. Leyden JJ. Review of mupirocin ointment in the treatment of impetigo. Clin Pediatr (Phila) 1992; 31: 549–53

    CAS  Google Scholar 

  97. Wilkinson RD, Carey WD. Topical mupirocin versus topical neosporin in the treatment of cutaneous infections. Int J Dermatol 1988; 27: 514–5

    PubMed  CAS  Google Scholar 

  98. Dux PH, Fields L, Pollock D. Two percent topical mupirocin versus systemic erythromycin and dicloxacillin in primary and secondary skin infections. Curr Ther Res Clin Exp 1986; 40: 933–40

    Google Scholar 

  99. Bass JW, Chan DS, Creamer KM, et al. Comparison of oral cephalexin, topical mupirocin and topical bacitracin for treatment of impetigo. Pediatr Infect Dis J 1997; 16: 708–10

    PubMed  CAS  Google Scholar 

  100. Leyden JJ. Mupirocin: a new topical antibiotic. J Am Acad Dermatol 1990; 22: 879–83

    PubMed  CAS  Google Scholar 

  101. Breneman DL. Use of mupirocin ointment in the treatment of secondarily infected dermatoses. J Am Acad Dermatol 1990; 22: 886–92

    PubMed  CAS  Google Scholar 

  102. Dacre JE, Emmerson AM, Jenner EA. Nasal carriage of gentamicin and methicillin-resistant Staphylococcus aureus treated with topical pseudomonic acid. Lancet 1983; II: 1036–7

    Google Scholar 

  103. Udo EE, Pearman JW, Grubb WB. Emergence of high-level mupirocin resistance in methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 1994; 26 (3): 157–65

    PubMed  CAS  Google Scholar 

  104. Riley TV, Carson CF, Bowman RA, et al. Mupirocin-resistant methicillin-resistant Staphylococcus aureus in Western Australia. Med J Aust 1994; 161 (6): 397–8

    PubMed  CAS  Google Scholar 

  105. Pawa A, Noble WC, Howell SA. Co-transfer of plasmids in association with conjugative transfer of mupirocin or mupirocin and penicillin resistance in methicillin-resistant Staphylococcus aureus. J Med Microbiol 2000; 49: 1103–7

    PubMed  CAS  Google Scholar 

  106. Bajaj AK, Gupta SC. Contact hypersensitivity to topical antibacterial agents. Int J Dermatol 1986; 25: 103–5

    PubMed  CAS  Google Scholar 

  107. Kucers A. Antibiotics. In: Kucers A, Crowe SM, Grayson ML, et al., editors. The use of antibiotics: a clinical review of antibacterial, antifungal and antiviral drugs. Melbourne: Butterworth-Heinemann, 1997: 3–801

    Google Scholar 

  108. Jensen K, Lassen HC. Combined treatment with antibacterial chemotherapeutical agents in staphylococcal infections. Q J Med 1969; 38 (149): 91–106

    PubMed  CAS  Google Scholar 

  109. Menday AP, Marsh BT. Intravenous fusidic acid (‘Fucidin’) in the management of severe staphylococcal infections: a review of 46 cases. Curr Med Res Opin 1976; 4 (2): 132–8

    PubMed  CAS  Google Scholar 

  110. O’Brien T, McManus F, MacAuley PH, et al. Acute haematogenous osteomyelitis. J Bone Joint Surg Br 1982; 64 (4): 450–3

    PubMed  Google Scholar 

  111. Blockey NJ, McAllister TA. Antibiotics in acute osteomyelitis in children. J Bone Joint Surg Br 1972; 54 (2): 299–309

    PubMed  CAS  Google Scholar 

  112. Learmonth ID, Dall G, Pollock DJ. Acute osteomyelitis and septic arthritis in children: a simple approach to treatment. South Afr Med J 1984; 65 (4): 117–20

    CAS  Google Scholar 

  113. Nordin P, Mobacken H. A comparison of fusidic acid and flucloxacillin in the treatment of skin and soft-tissue infection. Eur J Clin Res 1994; 5: 97–100

    Google Scholar 

  114. Carr WE, Wall AR, Georgala-Zervogiani S, et al. Fusidic acid tablets in patients with skin and soft-tissue infection: a dose-finding study. Eur J Clin Res 1994; 5: 87–95

    Google Scholar 

  115. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997; 10 (4): 781–91

    PubMed  CAS  Google Scholar 

  116. Chambers HF. Parenteral antibiotics for the treatment of bacteremia and other serious staphylococcal infections. In: Crossley KB, Archer GL, editors. The staphylococci in human disease. New York: Churchill Livingstone, 1997: 583–601

    Google Scholar 

  117. Kaatz GW, Seo SM, Dorman NJ, et al. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis 1990; 162 (1): 103–8

    PubMed  CAS  Google Scholar 

  118. Lassus A. Comparative studies of azithromycin in skin and soft-tissue infections and sexually transmitted infections by Neisseria and Chlamydia species. J Antimicrob Chemother 1990; 25 Suppl. A: 115–21

    PubMed  Google Scholar 

  119. Agache P, Amblard P, Moulin G, et al. Roxithromycin in skin and soft tissue infections. J Antimicrob Chemother 1987; 20 Suppl. B: 153–6

    PubMed  Google Scholar 

  120. Bazet MC, Blanc F. Roxithromycin in the treatment of paediatric infections. Br J Clin Pract 1988; 42 Suppl. 55: 117–8

    Google Scholar 

  121. Sasaki J. Clinical evaluation of roxithromycin in odontogenic orofacial infections. J Antimicrob Chemother 1987; 20 Suppl. B: 167–70

    PubMed  Google Scholar 

  122. Young RA, Gonzalez JP, Sorkin EM. Roxithromycin: a review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 1989; 37 (1): 8–41

    PubMed  CAS  Google Scholar 

  123. Daniel R. Simplified treatment of acute lower respiratory tract infection with azithromycin: a comparison with erythromycin and amoxicillin. European Azithromycin Study Group. J Int Med Res 1991; 19 (5): 373–83

    PubMed  CAS  Google Scholar 

  124. Peters DH, Friedel HA, McTavish D. Azithromycin: a review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 1992; 44 (5): 750–99

    PubMed  CAS  Google Scholar 

  125. Kiani R. Double-blind, double-dummy comparison of azithromycin and cephalexin in the treatment of skin and skin structure infections. Eur J Clin Microbiol Infect Dis 1991; 10 (10): 880–4

    PubMed  CAS  Google Scholar 

  126. Mallory SB. Azithromycin compared with cephalexin in the treatment of skin and skin structure infections. Am J Med 1991; 91 (3A): 36S-9S

    Google Scholar 

  127. Rodriguez-Solares A, Perez-Gutierrez F, Prosperi J, et al. A comparative study of the efficacy, safety and tolerance of azithromycin, dicloxacillin and flucloxacillin in the treatment of children with acute skin and skin-structure infections. J Antimicrob Chemother 1993; 31 Suppl. E: 103–9

    PubMed  Google Scholar 

  128. Pusponegoro EH, Wiryadi BE. Clindamycin and cloxacillin compared in the treatment of skin and soft-tissue infections. Clin Ther 1990; 12 (3): 236–41

    PubMed  CAS  Google Scholar 

  129. Mayberry-Carson KJ, Tober-Meyer B, Lambe Jr DW, et al. An electron microscopic study of the effect of clindamycin therapy on bacterial adherence and glycocalyx formation in experimental Staphylococcus aureus osteomyelitis. Microbios 1986; 48 (196–197): 189–206

    PubMed  CAS  Google Scholar 

  130. Norden CW, Shinners E, Niederriter K. Clindamycin treatment of experimental chronic osteomyelitis due to Staphylococcus aureus. J Infect Dis 1986; 153 (5): 956–9

    PubMed  CAS  Google Scholar 

  131. Rodriguez W, Ross S, Khan W, et al. Clindamycin in the treatment of osteomyelitis in children: a report of 29 cases. Am J Dis Child 1977; 131 (10): 1088–93

    PubMed  CAS  Google Scholar 

  132. Kaplan SL, Mason Jr EO, Feigin RD. Clindamycin versus nafcillin or methicillin in the treatment of Staphylococcus aureus osteomyelitis in children. South Med J 1982; 75 (2): 138–42

    PubMed  CAS  Google Scholar 

  133. Nichols RL, Graham DR, Barriere SL, et al. Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicenter studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group. J Antimicrob Chemother 1999; 44 (2): 263–73

    PubMed  CAS  Google Scholar 

  134. Drew RH, Perfect JR, Srinath L, et al. Treatment of methicillin-resistant Staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. For the Synercid Emergency-Use Study Group. J Antimicrob Chemother 2000; 46 (5): 775–84

    PubMed  CAS  Google Scholar 

  135. Dailey CF, Dileto-Fang CL, Buchanan LV, et al. Efficacy of linezolid in treatment of experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45 (8): 2304–8

    PubMed  CAS  Google Scholar 

  136. Stevens DL, Smith LG, Bruss JB, et al. Randomized comparison of linezolid (PNU-100766) versus oxacillin-dicloxacillin for treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 2000; 44 (12): 3408–13

    PubMed  CAS  Google Scholar 

  137. Tsiodras S, Gold HS, Sakoulas G, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 2001; 358 (9277): 207–8

    PubMed  CAS  Google Scholar 

  138. Anonymous. Product Information. Zyvox 2mg/mL injection, 600mg film coated tablets and 20mg/mL granules for oral suspension. Sydney (NSW): Pharmacia Australia Pty Limited, 2002

  139. Corallo CE, Paull AE. Linezolid-induced neuropathy. Med J Aust 2002; 177: 332

    PubMed  Google Scholar 

  140. Wolfson JS, Hooper DC. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 1989; 2 (4): 378–424

    PubMed  CAS  Google Scholar 

  141. Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N Engl J Med 1991; 324 (6): 384–94

    PubMed  CAS  Google Scholar 

  142. Gentry LO, Rodriguez-Gomez G. Ofloxacin versus parenteral therapy for chronic osteomyelitis. Antimicrob Agents Chemother 1991; 35 (3): 538–41

    PubMed  CAS  Google Scholar 

  143. Hooper DC. Quinolones. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas and Bennett’s principles and practice of infectious diseases. New York: Churchill Livingstone, 2000: 404–23

    Google Scholar 

  144. Drancourt M, Stein A, Argenson JN, et al. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother 1993; 37 (6): 1214–8

    PubMed  CAS  Google Scholar 

  145. Nichols RL, Smith JW, Gentry LO, et al. Multicenter, randomized study comparing levofloxacin and ciprofloxacin for uncomplicated skin and skin structure infections. South Med J 1997; 90 (12): 1193–200

    PubMed  CAS  Google Scholar 

  146. Tassler H. Comparative efficacy and safety of oral fleroxacin and amoxicillin/clavulanate potassium in skin and soft tissue infections. Am J Med 1993; 94 (3A): 159S-65S

    Google Scholar 

  147. Tarshis GA, Miskin BM, Jones TM, et al. Once-daily oral gatifloxacin versus oral levofloxacin in treatment of uncomplicated skin and soft tissue infections: double-blind, multicenter, randomized study. Antimicrob Agents Chemother 2001; 45 (8): 2358–62

    PubMed  CAS  Google Scholar 

  148. Sande MA, Mandell GL. Effect of rifampin on nasal carriage of Staphylococcus aureus. Antimicrob Agents Chemother 1975; 7: 294–7

    PubMed  CAS  Google Scholar 

  149. Ardati KO, Thirumoorthi MC, Dajani AS. Intravenous trimethoprim-sulfamethoxazole in the treatment of serious infections in children. J Pediatr 1979; 95 (5 Pt 1): 801–6

    PubMed  CAS  Google Scholar 

  150. Levitz RE, Quintiliani R. Trimethoprim-sulfamethoxazole for bacterial meningitis. Ann Intern Med 1984; 100 (6): 881–90

    PubMed  CAS  Google Scholar 

  151. Markowitz N, Quinn EL, Saravolatz LD. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med 1992; 117 (5): 390–8

    PubMed  CAS  Google Scholar 

  152. Paulsen IT, Firth N, Skurray RA. Resistance to antimicrobial agents other than β-lactams. In: Crossley KB, Archer GL, editors. The staphylococci in human disease. New York: Churchill Livingstone, 1997: 175–212

    Google Scholar 

  153. Yuk JH, Dignani MC, Harris RL, et al. Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis 1991; 13 (5): 1023–4

    PubMed  CAS  Google Scholar 

  154. Mulligan ME, Murray-Leisure KA, Ribner BS, et al. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 1993; 94 (3): 313–28

    PubMed  CAS  Google Scholar 

  155. van der Auwere P, Meunier-Carpentier F, Klastersky J. Clinical study of combination therapy with oxacillin and rifampin for staphylococcal infections. Rev Infect Dis 1983; 5 Suppl. 3: S515–22

    Google Scholar 

  156. Faville Jr RJ, Zaske DE, Kaplan EL, et al. Staphylococcus aureus endocarditis. Combined therapy with vancomycin and rifampin. JAMA 1978; 240 (18): 1963–5

    PubMed  Google Scholar 

  157. Massanari RM, Donta ST. The efficacy of rifampin as adjunctive therapy in selected cases of staphylococcal endocarditis. Chest 1978; 73 (3): 371–5

    PubMed  CAS  Google Scholar 

  158. Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med 1991; 115 (9): 674–80

    PubMed  CAS  Google Scholar 

  159. Simon GL, Smith RH, Sande MA. Emergence of rifampin-resistant strains of Staphylococcus aureus during combination therapy with vancomycin and rifampin: a report of two cases. Rev Infect Dis 1983; 5 Suppl. 3: S507–8

    Google Scholar 

  160. Eng RH, Smith SM, Tillem M, et al. Rifampin resistance: development during the therapy of methicillin-resistant Staphylococcus aureus infection. Arch Intern Med 1985; 145 (1): 146–8

    PubMed  CAS  Google Scholar 

  161. Burnie J, Matthews R, Jiman-Fatami A, et al. Analysis of 42 cases of septicemia caused by an epidemic strain of methicillin-resistant Staphylococcus aureus: evidence of resistance to vancomycin. Clin Infect Dis 2000; 31 (3): 684–9

    PubMed  CAS  Google Scholar 

  162. Gradelski E, Kolek B, Bonner DP, et al. Activity of gatifloxacin and ciprofloxacin in combination with other antimicrobial agents. Int J Antimicrob Agent 2001; 17 (2): 103–7

    CAS  Google Scholar 

  163. Fass RJ, Helsel VL. In vitro antistaphylococcal activity of pefloxacin alone and in combination with other antistaphylococcal drugs. Antimicrob Agents Chemother 1987; 31 (10): 1457–60

    PubMed  CAS  Google Scholar 

  164. Bamberger DM, Herndon BL, Dew M, et al. Efficacies of ofloxacin, rifampin, and clindamycin in treatment of Staphylococcus aureus abscesses and correlation with results of an in vitro assay of intracellular bacterial killing. Antimicrob Agents Chemother 1997; 41 (5): 1178–81

    PubMed  CAS  Google Scholar 

  165. Lew DP, Waldvogel FA. Use of quinolones in osteomyelitis and infected orthopaedic prosthesis. Drugs 1999; 58 Suppl. 2: 85–91

    PubMed  CAS  Google Scholar 

  166. Kaatz GW, Seo SM, Barriere SL, et al. Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 1989; 33 (8): 1184–7

    PubMed  CAS  Google Scholar 

  167. Zimmerli W, Frei R, Widmer AF, et al. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother 1994; 33 (5): 959–67

    PubMed  CAS  Google Scholar 

  168. Chuard C, Herrmann M, Vaudaux P, et al. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant by antimicrobial combinations. Antimicrob Agents Chemother 1991; 35 (12): 2611–6

    PubMed  CAS  Google Scholar 

  169. Lucet JC, Herrmann M, Rohner P, et al. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1990; 34 (12): 2312–7

    PubMed  CAS  Google Scholar 

  170. Dworkin R, Modin G, Kunz S, et al. Comparative efficacies of ciprofloxacin, pefloxacin, and vancomycin in combination with rifampin in a rat model of methicillin-resistant Staphylococcus aureus chronic osteomyelitis. Antimicrob Agents Chemother 1990; 34 (6): 1014–6

    PubMed  CAS  Google Scholar 

  171. Henry NK, Rouse MS, Whitesell AL, et al. Treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis with ciprofloxacin or vancomycin alone or in combination with rifampin. Am J Med 1987; 82 (4A): 73–5

    PubMed  CAS  Google Scholar 

  172. Dworkin RJ, Lee BL, Sande MA, et al. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet 1989; 2 (8671): 1071–3

    PubMed  CAS  Google Scholar 

  173. Traub WH, Spohr M, Bauer D. Gentamicin- and methicillin-resistant Staphylococcus aureus: in vitro susceptibility to antimicrobial drugs. Chemotherapy 1987; 33 (5): 361–75

    PubMed  CAS  Google Scholar 

  174. Renneberg J, Karlsson E, Nilsson B, et al. Interactions of drugs acting against Staphylococcus aureus in vitro and in a mouse model. J Infect 1993; 26 (3): 265–77

    PubMed  CAS  Google Scholar 

  175. O’Reilly T, Kunz S, Sande E, et al. Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin. Antimicrob Agents Chemother 1992; 36 (12): 2693–7

    PubMed  Google Scholar 

  176. Hackbarth CJ, Chambers HF, Sande MA. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother 1986; 29 (4): 611–3

    PubMed  CAS  Google Scholar 

  177. Turnidge J, Grayson ML. Optimum treatment of staphylococcal infections. Drugs 1993; 45 (3): 353–66

    PubMed  CAS  Google Scholar 

  178. Rahman M. Treatment of superficial infection or colonization with methicillin-resistant Staphylococcus aureus (MRSA) by various topical and systemic antimicrobials. In: Berkarda B, Keumele HP, editors. MRSA infection. Londsberg (Lech): Ecomed Publishers, 1987: 1578–80

    Google Scholar 

  179. Rahman M. Alternatives to vancomycin in treating methicillin-resistant Staphylococcus aureus infections. J Antimicrob Chemother 1998; 41 (3): 325–8

    PubMed  CAS  Google Scholar 

  180. Martin MA. Methicillin-resistant Staphylococcus aureus: the persistent resistant nosocomial pathogen. Curr Clin Top Infect Dis 1994; 14: 170–91

    PubMed  CAS  Google Scholar 

  181. Cox RA, Conquest C, Mallaghan C, et al. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J Hosp Infect 1995; 29 (2): 87–106

    PubMed  CAS  Google Scholar 

  182. O’Neill AJ, Cove JH, Chopra I. Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother 2001; 47 (5): 647–50

    PubMed  Google Scholar 

  183. Dixson S, Brumfitt W, Hamilton-Miller JM. In vitro activity of combinations of antibiotics against Staphylococcus aureus resistant to gentamicin and methicillin. Infect 1985; 13 (1): 35–8

    CAS  Google Scholar 

  184. Roder BL, Forsgren A, Gutschik E. The effect of antistaphylococcal agents used alone and in combinations on the survival of Staphylococcus aureus ingested by human polymorphonuclear leukocytes. APMIS 1991; 99 (6): 521–9

    PubMed  CAS  Google Scholar 

  185. Nielsen SL, Black FT. Extracellular and intracellular killing in neutrophil granulocytes of Staphylococcus aureus with rifampicin in combination with dicloxacillin or fusidic acid. J Antimicrob Chemother 1999; 43 (3): 407–10

    PubMed  CAS  Google Scholar 

  186. Foldes M, Munro R, Sorrell TC, et al. In vitro effects of vancomycin, rifampicin, and fusidic acid, alone and in combination, against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1983; 11 (1): 21–6

    PubMed  CAS  Google Scholar 

  187. Norden CW, Keleti E. Treatment of experimental staphylococcal osteomyelitis with rifampin and trimethoprim, alone and in combination. Antimicrob Agents Chemother 1980; 17 (4): 591–4

    PubMed  CAS  Google Scholar 

  188. Sanchez C, Matamala A, Salavert M, et al. Cotrimoxazole plus rifampicin in the treatment of staphylococcal osteoarticular infection [in Spanish]. Enferm Infecc Microbiol Clin 1997; 15 (1): 10–3

    PubMed  CAS  Google Scholar 

  189. Sambatakou H, Giamarellos-Bourboulis EJ, Grecka P, et al. In vitro activity and killing effect of quinupristin/dalfopristin (RP59500) on nosocomial Staphylococcus aureus and interactions with rifampicin and ciprofloxacin against methicillin-resistant isolates. J Antimicrob Chemother 1998; 41 (3): 349–55

    PubMed  CAS  Google Scholar 

  190. Zarrouk V, Bozdogan B, Leclercq R, et al. Activities of the combination of quinupristin-dalfopristin with rifampin in vitro and in experimental endocarditis due to Staphylococcus aureus strains with various phenotypes of resistance to macrolide-lincosamide-streptogramin antibiotics. Antimicrob Agents Chemother 2001; 45 (4): 1244–8

    PubMed  CAS  Google Scholar 

  191. Thamlikitkul V. Synergy study of vancomycin or teicoplanin plus gentamicin against enterococci, Staphylococcus aureus and coagulase-negative staphylococci by time-kill method. J Med Assoc Thai 1991; 74 (12): 669–74

    PubMed  CAS  Google Scholar 

  192. Perdikaris G, Giamarellou H, Pefanis A, et al. Vancomycin or vancomycin plus netilmicin for methicillin- and gentamicin-resistant Staphylococcus aureus aortic valve experimental endocarditis. Antimicrob Agents Chemother 1995; 39 (10): 2289–94

    PubMed  CAS  Google Scholar 

  193. Smith SM, Eng RH, Berman E. The effect of ciprofloxacin on methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1986; 17 (3): 287–95

    PubMed  CAS  Google Scholar 

  194. Jedlickova Z, Ryc M, Libanska A. Combination effects with some aminoglycoside antibiotics. J Hyg Epidemiol Microbiol Immunol 1981; 25 (2): 204–6

    PubMed  CAS  Google Scholar 

  195. Adam D, Nawrath I. On the combination of clindamycin with β-lactam antibiotics and aminoglycosides [in German]. Arzneimittel Forschung 1981; 31 (8): 1295–8

    PubMed  CAS  Google Scholar 

  196. Drugeon HB, Caillon J, Juvin ME. In vitro antibacterial activity of fusidic acid alone and in combination with other antibiotics against methicillin-sensitive and -resistant Staphylococcus aureus. J Antimicrob Chemother 1994; 34 (6): 899–907

    PubMed  CAS  Google Scholar 

  197. Cruciani M, Concia E, Monzillo V, et al. Antistaphylococcal activity of teicoplanin in association with other antibiotics. Microbiologica 1987; 10 (2): 197–207

    PubMed  CAS  Google Scholar 

  198. McGrath BJ, Kang SL, Kaatz GW, et al. Bactericidal activities of teicoplanin, vancomycin, and gentamicin alone and in combination against Staphylococcus aureus in an in vitro pharmacodynamic model of endocarditis. Antimicrob Agents Chemother 1994; 38 (9): 2034–40

    PubMed  CAS  Google Scholar 

  199. Arioli V, Berti M, Candiani G. Activity of teicoplanin in localized experimental infections in rats. J Hosp Infect 1986; 7 Suppl. A: 91–9

    PubMed  Google Scholar 

  200. Goto Y, Hiramatsu K, Nasu M. Improved efficacy with nonsimultaneous administration of netilmicin and minocycline against methicillin-resistant Staphylococcus aureus inin vitro and in vivo models. Int J Antimicrob Agents 1999; 11 (1): 39–46

    PubMed  CAS  Google Scholar 

  201. Kang SL, Rybak MJ. In vitro bactericidal activity of quinupristin/dalfopristin alone and in combination against resistant strains of Enterococcus species and Staphylococcus aureus. J Antimicrob Chemother 1997; 39 Suppl. A: 33–9

    PubMed  CAS  Google Scholar 

  202. Fuchs PC, Barry AL, Brown SD. Interactions of quinupristin-dalfopristin with eight other antibiotics as measured by time-kill studies with 10 strains of Staphylococcus aureus for which quinupristin-dalfopristin alone was not bactericidal. Antimicrob Agents Chemother 2001; 45 (9): 2662–5

    PubMed  CAS  Google Scholar 

  203. Baltch AL, Bassey C, Fanciullo G, et al. In vitro antimicrobial activity of enoxacin in combination with eight other antibiotics against Pseudomonas aeruginosa, Enterobacteriaceae and Staphylococcus aureus. J Antimicrob Chemother 1987; 19 (1): 45–8

    PubMed  CAS  Google Scholar 

  204. Ho JL, Klempner MS. In vitro evaluation of clindamycin in combination with oxacillin, rifampin, or vancomycin against Staphylococcus aureus. Diagn Microbiol Infect Dis 1986; 4 (2): 133–8

    PubMed  CAS  Google Scholar 

  205. Chin NX, Neu HC. Combination of ofloxacin and other antimicrobial agents. J Chemother 1990; 2 (6): 343–7

    PubMed  CAS  Google Scholar 

  206. Maggiolo F, Capra R, Bottura P, et al. In vitro activity of moxifloxacin combined with other antibacterials against methicillin-resistant Staphylococcus aureus. J Chemother 2000; 12 (3): 195–8

    PubMed  CAS  Google Scholar 

  207. Lewin CS, Kelsey SM, Paton R, et al. Assessment of the interaction between ciprofloxacin and teicoplanin in vitro and in neutropenic patients. J Antimicrob Chemother 1990; 26 (4): 549–59

    PubMed  CAS  Google Scholar 

  208. Vouillamoz J, Entenza JM, Feger C, et al. Quinupristin-dalfopristin combined with β-lactams for treatment of experimental endocarditis due to Staphylococcus aureus constitutively resistant to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob Agents Chemother 2000; 44 (7): 1789–95

    PubMed  CAS  Google Scholar 

  209. Dickgiesser N, in der Stroth SS, Wundt W. Synergism of ciprofloxacin with β-lactam antibiotics, gentamicin, minocycline and pipemidic acid [in German]. Infection 1986; 14 (2): 82–5

    PubMed  CAS  Google Scholar 

  210. Craig WA. Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc., 2002: 1–22

    Google Scholar 

  211. Nightingale CH, Murakawa T. Microbiology and pharmacokinetics. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc. 2002: 23–39

    Google Scholar 

  212. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 1991; 74: 63–70

    Google Scholar 

  213. Andes D, van Ogtrop M. In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother 2000; 44 (4): 938–42

    PubMed  CAS  Google Scholar 

  214. Bundtzen RW, Gerber AU, Cohn DL, et al. Post-antibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3 (1): 28–37

    PubMed  CAS  Google Scholar 

  215. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26 (1): 1–10

    PubMed  CAS  Google Scholar 

  216. Drusano GL, Johnson DE, Rosen M, et al. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother 1993; 37 (3): 483–90

    PubMed  CAS  Google Scholar 

  217. Leggett JE, Ebert S, Fantin B, et al. Comparative dose-effect relations at several dosing intervals for β-lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl 1990; 74: 179–84

    PubMed  CAS  Google Scholar 

  218. Ross GH, Wright DH, Rotschafer JC, et al. Glycopeptide pharmacodynamics. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc., 2002: 177–204

    Google Scholar 

  219. Duffull SB, Begg EJ, Chambers ST, et al. Efficacies of different vancomycin dosing regimens against Staphylococcus aureus determined with a dynamic in vitro model. Antimicrob Agents Chemother 1994; 38 (10): 2480–2

    PubMed  CAS  Google Scholar 

  220. Flandrois JP, Fardel G, Carret G. Early stages of in vitro killing curve of LY146032 and vancomycin for Staphylococcus aureus. Antimicrob Agents Chemother 1988; 32 (4): 454–7

    PubMed  CAS  Google Scholar 

  221. Ackerman BH, Vannier AM, Eudy EB. Analysis of vancomycin time-kill studies with Staphylococcus species by using a curve stripping program to describe the relationship between concentration and pharmacodynamic response. Antimicrob Agents Chemother 1992; 36 (8): 1766–9

    PubMed  CAS  Google Scholar 

  222. Schaad UB, McCracken GH, Nelson JD. Clinical pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr 1980; 96 (1): 119–26

    PubMed  CAS  Google Scholar 

  223. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinetic 1995; 28 (2): 143–60

    CAS  Google Scholar 

  224. den Hollander JG, Knudsen JD, Mouton JW, et al. Comparison of pharmacodynamics of azithromycin and erythromycin in vitro and in vivo. Antimicrob Agents Chemother 1998; 42 (2): 377–82

    Google Scholar 

  225. Klepser ME, Nicolau DP, Quintiliani R, et al. Bactericidal activity of low-dose clindamycin administered at 8- and 12-hour intervals against Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides fragilis. Antimicrob Agents Chemother 1997; 41 (3): 630–5

    PubMed  CAS  Google Scholar 

  226. Rybak MJ, Houlihan HH, Mercier RC, et al. Pharmacodynamics of RP 59500 (quinupristin-dalfopristin) administered by intermittent versus continuous infusion against Staphylococcus aureus-infected fibrin-platelet clots in an in vitro infection model. Antimicrob Agents Chemother 1997; 41 (6): 1359–63

    PubMed  CAS  Google Scholar 

  227. Lamp K, Lacy MK, Freeman C. Metronidazole, clindamycin, and streptogramin pharmacodynamics. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc., 2002: 221–46

    Google Scholar 

  228. Chambers HF. Studies of RP 59500 in vitro and in a rabbit model of aortic valve endocarditis caused by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1992; 30 Suppl. A: 117–22

    PubMed  CAS  Google Scholar 

  229. Nightingale CH, Mattoes HM. Macrolide, azalide, and ketolide pharmacodynamics. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc. 2002: 205–20

    Google Scholar 

  230. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37 (5): 1073–81

    PubMed  CAS  Google Scholar 

  231. Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 1998; 279 (2): 125–9

    PubMed  CAS  Google Scholar 

  232. Ambrose PG, Grasela DM, Grasela TH, et al. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45 (10): 2793–7

    PubMed  CAS  Google Scholar 

  233. Cunha BA, Mattoes HM. Tetracycline pharmacodynamics. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc., 2002: 247–57

    Google Scholar 

  234. Cunha BA, Domenico P, Cunha CB. Pharmacodynamics of doxycycline. Clin Microbiol Infect 2000; 6 (5): 270–3

    PubMed  CAS  Google Scholar 

  235. Owens RC, Ambrose PG. Pharmacodynamics of quinolones. In: Nightingale CH, Murakawa T, Ambrose PG, editors. Antimicrobial pharmacodynamics in theory and clinical practice. New York: Marcel Dekker Inc., 2002: 155–76

    Google Scholar 

  236. Gosbell IB, Fernandes LA, Fernandes CJ. Agar dilution MIC and time kill assays on Staphylococcus aureus, focussing on non-multiresistant MRSA strains [abstract 1]. In: Australasian Society for Infectious Diseases Annual Scientific Meeting Abstract Book. Rowland Flat, 2002: 56

    Google Scholar 

  237. Miller MH, Wexler MA, Steigbigel NH. Single and combination antibiotic therapy of Staphylococcus aureus experimental endocarditis: emergence of gentamicin-resistant mutants. Antimicrob Agents Chemother 1978; 14 (3): 336–43

    PubMed  CAS  Google Scholar 

  238. Collignon P. Community-acquired MRSA. Australian Society for Antimicrobials 1st Annual Scientific Meeting; 2000 3; Sydney. Melbourne: International Management Convention Management Services: 3

  239. Neu HC. Bacterial resistance to fluoroquinolones. Rev Infect Dis 1988; 10 Suppl. 1: S57–63

    Google Scholar 

  240. Griswold MW, Lomaestro BM, Briceland LL. Quinupristin-dalfopristin (RP 59500): an injectable streptogramin combination. Am J Health Syst Pharm 1996; 53 (17): 2045–53

    PubMed  CAS  Google Scholar 

  241. Ellis-Pegler R. Plenary 1. Antibiotics: choices and resistance problems, Auckland Style. Antimicrobials 2003, Australian Society for Antimicrobials 4th Annual Scientific Meeting. Melbourne: Australian Society for Antimicrobials, 2003

Download references

Acknowledgment

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain B. Gosbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosbell, I.B. Methicillin-Resistant Staphylococcus Aureus . Am J Clin Dermatol 5, 239–259 (2004). https://doi.org/10.2165/00128071-200405040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200405040-00004

Keywords

Navigation