Skip to main content
Log in

Laser and Intense Pulsed Light Therapy for the Esthetic Treatment of Lower Extremity Veins

  • Therapy in Practice
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The role of lasers and intense pulsed light sources has gained increasing popularity over the last decade. Major advances associated with improved results are the main reasons associated with this increasing popularity. These advances include epidermal cooling technologies, variable spot sizes and pulse durations as well as the ability to deliver high-energy fluences.

These advances have allowed the delivery of sufficient energy to cause uniform pan-endothelial necrosis without affecting epidermal structures causing adverse sequelae such as post-inflammatory hyperpigmentation and epidermal surface irregularities.

The advent of extended-pulse longer-wavelength technologies such as the 1064 Neodymium : Yttrium Aluminum Garnet (Nd : YAG) laser have allowed the treatment of individuals with darker phenotypic skin types as well as deep blue reticular veins up to 3mm in diameter in a monomodal fashion.

Combined approaches of sclerotherapy plus laser treatments performed at the same treatment session may produce synergistic results in selected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table IV

Similar content being viewed by others

References

  1. Kauvar ANB. The role of lasers in the treatment of leg veins. Semin Cutan Med Surg 2000; 19: 245–52

    Article  PubMed  CAS  Google Scholar 

  2. Dover JS, Sadick NS, Goldman MP. The role of lasers and light sources in the treatment of leg veins. Dermatol Surg 1999; 25: 328–36

    Article  PubMed  CAS  Google Scholar 

  3. Goldman MP. Treatment of leg veins with lasers and intense pulsed light. Dermatol Clin 2001; 19: 467–73

    PubMed  CAS  Google Scholar 

  4. Sadick NS, Weiss RA, Goldman MP. Advances in laser surgery for leg veins: bimodal wavelength approach to lower extremity vessels, new cooling techniques and longer pulse durations. Dermatol Surg 2002; 28: 16–20

    Article  PubMed  Google Scholar 

  5. Sadick NS. A dual wavelength approach for laser/intense pulsed light source treatment of lower extremity veins. J Am Acad Dermatol 2002; 46: 66–72

    Article  PubMed  Google Scholar 

  6. Goldman MP, Weiss RA. Treatment of leg telangiectasia with laser and high-intense pulsed light. Dermatol Ther 2000; 13: 38–49

    Article  Google Scholar 

  7. Medical Insight, Inc. Vascular comparison chart [online]. Available from URL: http://www.miinews.com/pdf/vascular_0702.pdf [Accessed 2003 Jul 3]

  8. Apfelberg DB, Maser MR, Lash H, et al. Study of three laser systems for treatment of superficial varicosities of the lower extremity. Lasers Surg Med 1987; 7: 219–23

    Article  PubMed  CAS  Google Scholar 

  9. Weiss RA, Dover JS. Laser surgery of leg veins. Dermatol Clin 2002; 20: 19–36

    Article  PubMed  Google Scholar 

  10. Sadick NS, Weiss RA. The utilization of a new yellow light laser (578 nm) for the treatment of Class I red telangiectasia of the lower extremities. Dermatol Surg 2002; 28: 21–5

    Article  PubMed  Google Scholar 

  11. Apfelberg DB, Maser MR, Lash H, et al. Use of the argon and carbon dioxide lasers for treatment of superficial venous varicosities of the lower extremity. Lasers Surg Med 1984; 4: 221–31

    Article  PubMed  CAS  Google Scholar 

  12. Dixon JA, Rotering RH, Huether SE. Patient’s evaluation of argon laser therapy of port-wine stain, decorative tattoos, and essential telangiectasia. Lasers Surg Med 1984; 4: 181–4

    Article  PubMed  CAS  Google Scholar 

  13. Corcos L, Longo L. Classification and treatment of telangiectases of the lower limbs. Laser 1988; 1: 22–7

    Google Scholar 

  14. Keller GS. KTP laser offers advances in minimally invasive plastic surgery. Clin Laser Mon 1992; 10: 141–4

    PubMed  CAS  Google Scholar 

  15. West TB, Alster TS. Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg 1998; 24: 221–6

    Article  PubMed  CAS  Google Scholar 

  16. Adrian RM. Treatment of leg telangiectasias using a long-pulse frequency-doubled neodymium: YAG laser at 532 nm. Dermatol Surg 1998; 24: 19–23

    CAS  Google Scholar 

  17. Goldman MP, Fitzpatrick RE. Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy. J Dermatol Surg Oncol 1990; 16: 338–44

    PubMed  CAS  Google Scholar 

  18. Garden JM, Tan OT, Kerschmann R, et al. Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol 1986; 87: 653–7

    Article  PubMed  CAS  Google Scholar 

  19. Dierickx CC, Casparian JM, Venugopalan V, et al. Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1–10 millisecond laser pulse treatment. J Invest Dermatol 1995; 105: 709–14

    Article  PubMed  CAS  Google Scholar 

  20. Hsia J, Lowery JA, Zelickson B. Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med 1997; 20: 1–5

    Article  PubMed  CAS  Google Scholar 

  21. Alora MB, Herd RH, Szabo E. Comparison of the 595 nm long pulse (1.5 ms) and the 595 m ultra-long pulse (4 ms) laser in the treatment of leg veins. Lasers Surg Med 1998; Suppl. 38: 10

    Google Scholar 

  22. Lee PK, Lask G. Treatment of leg veins by long pulsed dye laser (sclerolaser). Lasers Surg Med 1997; Suppl. 40: 9

    Google Scholar 

  23. Reichert D. Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg 1998; 24: 737–40

    Article  PubMed  CAS  Google Scholar 

  24. McDaniel DH, Ash K, Lord J, et al. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg 1999; 25: 52–8

    Article  PubMed  CAS  Google Scholar 

  25. Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol 2000; 136: 1371–5

    Article  PubMed  CAS  Google Scholar 

  26. Kaudewitz P, Klövekorn W, Rother W. Effective treatment of leg vein telangiectasia with a new 940 nm diode laser. Dermatol Surg 2001; 27: 101–6

    Article  PubMed  CAS  Google Scholar 

  27. Garden JM, Bakus AD, Miller ID. Diode laser treatment of leg veins. Lasers Surg Med Suppl 1998; 10: 38–43

    Google Scholar 

  28. Goldman MP, Eckhouse S. Photothermal sclerosis of leg veins: ESC Medical Systems, LTD Photoderm VL Cooperative Study Group. Dermatol Surg 1996; 22: 323–30

    Article  PubMed  CAS  Google Scholar 

  29. Weiss RA, Weiss MA, Marwaha S, et al. Non-coherent filtered flashlamp intense pulsed light source for leg telangiectasias: long pulse durations for improved results. Lasers Surg Med Suppl 1998; 10: 40–6

    Google Scholar 

  30. Rugachefsky A, Silapunt S, Goldberg DJ. Nd: YAG laser 1064 nm irradiation for lower extremity telangiectasias and small reticular veins: efficacy as measured by vessel colors and size. Dermatol Surg 2002; 28: 220–3

    Article  Google Scholar 

  31. Eremias LIC V. Treatment of leg and face veins with a cryogen spray variable pulse width 1064 nm Nd: YAG laser: a prospective study of 47 patients. J Cosmet Laser Ther 2001; 3: 147–53

    Article  Google Scholar 

  32. Sadick NS. Long-term results with a multiple synchronized pulse 1064 nm Nd: YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg 2001; 27: 365–9

    Article  PubMed  CAS  Google Scholar 

  33. Eremias LIC, Umars H. A side-by-side comparative study of 1064 nm Nd: YAG, 310 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3.0 mm leg veins. Dermatol Surg 2002; 28: 224–30

    Article  Google Scholar 

  34. Waldorf HA, Alster TS, McMillan K, et al. Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks. Dermatol Surg 1997; 23: 657–62

    Article  PubMed  CAS  Google Scholar 

  35. Green D. Photothermal removal of telangiectases of the lower extremities with the Photoderm XL. J Am Acad Dermatol 1998 Jan; 38 (1): 61–8

    Article  PubMed  CAS  Google Scholar 

  36. Goldman MP, Sadick NS, Weiss RA. Cutaneous necrosis, telangiectatic matting and hypersensitivity following sclerotherapy. Dermatol Surg 1995; 21: 19–29

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author has provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil S. Sadick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadick, N.S. Laser and Intense Pulsed Light Therapy for the Esthetic Treatment of Lower Extremity Veins. Am J Clin Dermatol 4, 545–554 (2003). https://doi.org/10.2165/00128071-200304080-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200304080-00004

Keywords

Navigation