Skip to main content
Log in

A Chaperone-Mediated Approach to Enzyme Enhancement as a Therapeutic Option for the Lysosomal Storage Disorders

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Enzyme activity can be deficient in the lysosome because certain newly synthesised mutation-bearing proteins are unstable and prone to misfolding. These structurally defective proteins are detected by the quality control system in the endoplasmic reticulum and subsequently diverted to cellular pathways of degradation. Recent studies have shown that low molecular weight ligands that are competitive inhibitors for some of these lysosomal enzymes can, in subinhibitory concentrations, act as ‘chaperones’ and rescue the mutant proteins, leading to the reconstitution of their hydrolytic activity within the lysosome. The potential of these agents as a therapeutic option will be dependent on their safety and tolerability profile, and the absence of toxic metabolic byproducts resulting from their use; there should be no or minimal nonspecific interference with other physiological or adaptive cellular activities. Compared with enzyme replacement therapy, the plausible advantages of using small molecule chaperones derive from the ease of oral administration, lack of immunogenicity and the possibility of delivery across the blood-brain barrier; and thus the potential to treat neurodegenerative clinical variants. The major challenges in developing therapies for rare diseases, such as the lysosomal storage disorders (LSDs), include recruitment of a sufficient number of suitable study patients and establishment of the optimal (dose/frequency) regimen to achieve a meaningful outcome. Multiple therapeutic approaches for the LSDs will provide patients with a range of options, which may be adequate as singular strategies or when given in combination. This review examines the characteristics of select agents that represent current candidates for a chaperone-mediated approach to the treatment of a subgroup of the LSDs, specifically the glycosphingolipidoses. Clinical trial experience with the use of these drugs will clarify their position in the management algorithm, which currently has enzyme replacement therapy as its linchpin. A major therapeutic goal would be improved physical and functional wellbeing, leading to increased meaningful survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Table III

Similar content being viewed by others

References

  1. Weibel TD, Brady RO. Systematic approach to the diagnosis of lysosomal storage disorders. Ment Retard Dev Disabil Res Rev 2001; 7 (3): 190–9

    Article  PubMed  CAS  Google Scholar 

  2. Meikle PJ, Fietz MJ, Hopwood JJ. Diagnosis of lysosomal storage disorders: current techniques and future directions. Expert Rev Mol Diagn 2004 Sep; 4 (5): 677–91

    Article  PubMed  CAS  Google Scholar 

  3. Martin PL, Carter SL, Kernan NA, et al. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant 2006 Feb; 12 (2): 184–94

    Article  PubMed  Google Scholar 

  4. Pastores GM. Enzyme therapy for the lysosomal storage disorders: principles, patents, practice and prospects. Expert Opin Ther Patents 2003; 13 (8): 1157–72

    Article  CAS  Google Scholar 

  5. Pastores GM, Barnett NL. Substrate reduction therapy: miglustat as a remedy for symptomatic patients with Gaucher disease type 1. Expert Opin Investig Drugs 2003 Feb; 12 (2): 273–81

    Article  PubMed  CAS  Google Scholar 

  6. Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 2002 Dec; 3 12): 954–66

    Article  PubMed  CAS  Google Scholar 

  7. Hodges BL, Cheng SH. Cell and gene-based therapies for the lysosomal storage diseases. Curr Gene Ther 2006 Apr; 6 (2): 227–41

    Article  PubMed  CAS  Google Scholar 

  8. Gregersen N, Bross P, Vang S, et al. Protein misfolding and human disease. Annu Rev Genomics Hum Genet 2006; 7: 103–24

    Article  PubMed  CAS  Google Scholar 

  9. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74: 739–89

    Article  PubMed  Google Scholar 

  10. Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 2004 Dec; 16 (6): 653–62

    Article  PubMed  CAS  Google Scholar 

  11. Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 2005 Jan; 19 (1): 12–8

    Article  PubMed  CAS  Google Scholar 

  12. Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005 Aug 15; 14 (16): 2387–98

    Article  PubMed  CAS  Google Scholar 

  13. Lwin A, Orvisky E, Goker-Alpan O, et al. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004 Jan; 81 (1): 70–3

    Article  PubMed  CAS  Google Scholar 

  14. Wong K, Sidransky E, Verma A, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 2004 Jul; 82 (3): 192–207

    Article  PubMed  CAS  Google Scholar 

  15. Leinekugel P, Michel S, Conzelmann E, et al. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992; 88: 513–23

    Article  PubMed  CAS  Google Scholar 

  16. Gieselmann V. What can cell biology tell us about heterogeneity in lysosomal storage diseases? Acta Paediatr Suppl 2005 Mar; 94 (447): 80–6

    Article  PubMed  CAS  Google Scholar 

  17. Giri S, Khan M, Rattan R, et al. Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J Lipid Res 2006 Jul; 47 (7): 1478–92

    Article  PubMed  CAS  Google Scholar 

  18. Fan J-Q. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 2003; 24: 355–60

    Article  PubMed  CAS  Google Scholar 

  19. Ulloa-Aguirre A, Janovick JA, Brothers SP, et al. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 2004 Nov; 5 (11): 821–37

    Article  PubMed  CAS  Google Scholar 

  20. Gosal D, Ross OA, Toft M. Parkinson’s disease: the genetics of a heterogeneous disorder. Eur J Neurol 2006 Jun; 13 (6): 616–27

    Article  PubMed  CAS  Google Scholar 

  21. Fan JQ, Ishii S, Asano N, et al. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999 Jan; 5 (1): 112–5

    Article  PubMed  CAS  Google Scholar 

  22. Fan JQ, Ishii S. Cell-based screening of active-site specific chaperone for the treatment of Fabry disease. Methods Enzymol 2003; 363: 412–20

    Article  PubMed  CAS  Google Scholar 

  23. Yam GH, Bosshard N, Zuber C, et al. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 2006 Apr; 290 (4): C1076–82

    Article  PubMed  CAS  Google Scholar 

  24. Okumiya T, Ishii S, Takenaka T, et al. Galactose stabilizes various missense mutants of alpha-galactosidase in Fabry disease. Biochem Biophys Res Commun 1995 Sep 25; 214 (3): 1219–24

    Article  PubMed  CAS  Google Scholar 

  25. Frustaci A, Chimenti C, Ricci R, et al. Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy. N Engl J Med 2001 Jul 5; 345(1): 25–32

    Article  PubMed  CAS  Google Scholar 

  26. Schmitz M, Alfalah M, Aerts JM, et al. Impaired trafficking of mutants of lysosomal glucocerebrosidase in Gaucher’s dis-ease. Int J Biochem Cell Biol 2005 Nov; 37(11): 2310–20

    Article  PubMed  CAS  Google Scholar 

  27. Lin H, Sugimoto Y, Ohsaki Y, et al. N-octyl-beta-valienamine up-regulates activity of F213I mutant beta-glucosidase in cultured cells: a potential chemical chaperone therapy for Gaucher disease. Biochim Biophys Acta 2004 Aug 4; 1689 (3): 219–28

    Article  PubMed  CAS  Google Scholar 

  28. Sawkar AR, Cheng WC, Beutler E, et al. Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci U S A 2002 Nov 26; 99(24): 15428–33

    Article  PubMed  CAS  Google Scholar 

  29. Sawkar AR, Adamski-Werner SL, Cheng WC, et al. Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem Biol 2005 Nov; 12(11): 1235–44

    Article  PubMed  CAS  Google Scholar 

  30. Alfonso P, Pampin S, Estrada J, et al. Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 2005 Sep–Oct; 35(2): 268–76

    Article  PubMed  CAS  Google Scholar 

  31. Tropak MB, Reid SP, Guiral M, et al. Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J Biol Chem 2004 Apr 2; 279(14): 13478–87

    Article  PubMed  CAS  Google Scholar 

  32. Matsuda J, Suzuki O, Oshima A, et al. Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci U S A 2003 Dec 23; 100(26): 15912–7

    Article  PubMed  CAS  Google Scholar 

  33. Tominaga L, Ogawa Y, Taniguchi M, et al. Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev 2001 Aug; 23(5): 284–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors are currently engaged as co-investigators in a multicentre, open-label clinical trial using 1-deoxygalactonojirimycin for Fabry disease (sponsored by Amicus Therapeutics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Pastores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastores, G.M., Sathe, S. A Chaperone-Mediated Approach to Enzyme Enhancement as a Therapeutic Option for the Lysosomal Storage Disorders. Drugs R D 7, 339–348 (2006). https://doi.org/10.2165/00126839-200607060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200607060-00003

Keywords

Navigation