Skip to main content
Log in

Antidepressant Drug-Drug Interaction Profile Update

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Drug-drug interactions continue to be underappreciated and misunderstood by most clinicians. Although life-threatening drug interactions are rare, serious clinical consequences, including altered drug response, poor tolerability with reduced medication adherence, and increased costs for care tied to the increased complexity of therapy, are fairly commonplace. Drug interactions may be further complicated by genetic differences in metabolic capacity. Patients who routinely require long-term treatment for depression have an increased likelihood of experiencing a drug-drug interaction since they will take over-the-counter and prescription medications for intercurrent and/or co-morbid illness. Antidepressants can be the object of drug interactions when their metabolic pathways are affected by other substances, or they can precipitate interactions by inhibiting enzyme pathways. Clinicians can improve the short- and long-term outcomes of patients with a depressive disorder by considering the possibility of drug-drug interactions both before prescribing a specific antidepressant and while monitoring for response, adverse effects and patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III
Fig. 3
Table IV
Table V

Similar content being viewed by others

References

  1. Ereshefsky L, Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety 2000; 12 Suppl. 1: 30–44

    Article  PubMed  Google Scholar 

  2. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000 Jan 38; (1): 41–57

    Article  PubMed  CAS  Google Scholar 

  3. Chang WH, Augustin B, Lane HY, et al. In-vitro and in-vivo evaluation of the drug-drug interaction between fluvoxamine and clozapine. Psychopharmacol (Berl) 1999; 145 (1): 91–8

    Article  CAS  Google Scholar 

  4. Armstrong SC, Stephans JR. Blood clozapine levels elevated by fluvoxamine: potential for side effects and lower clozapine dosage [letter]. J Clin Psychiatry 1997; 58 (11): 499

    Article  PubMed  CAS  Google Scholar 

  5. Wang CY, Zhang ZJ, Li WB, et al. The differential effects of steady-state fluvoxamine on the pharmacokinetics of olanzapine and clozapine in healthy volunteers. J Clin Pharmacol 2004; 44 (7): 785–92

    Article  PubMed  CAS  Google Scholar 

  6. Bootman JL. The $76 billion wake-up call. J Am Pharm Assoc (Wash) 1996 Jan; NS36 (1): 27–8

    CAS  Google Scholar 

  7. Johnson JA, Bootman JL. Drug-related morbidity and mortality and the economic impact of pharmaceutical care. Am J Health Syst Pharm 1997 Mar 1; 54 (5): 554–8

    PubMed  CAS  Google Scholar 

  8. Doucet J, Chassagne P, Trivalle C, et al. Drug-drug interactions related to hospital admissions in older adults: a prospective study of 1000 patients. J Am Geriatr Soc 1996; 44 (8): 944–8

    PubMed  CAS  Google Scholar 

  9. Kohn LT, Corrigan JM, Donaldson MS. To err is human: building a safer health system. Institute of Medicine. Washington, DC: National Academy Press, 1999

    Google Scholar 

  10. Classen DC, Pestotnik SL, Evans RS, et al. Adverse drug events in hospitalized patients: excess length of stay, extra costs, and attributable mortality. JAMA 1997 Jan 22; 277 (4): 301–6

    Article  PubMed  CAS  Google Scholar 

  11. Davis MP, Homsi J. The importance of cytochrome P450 monooxygenase CYP2D6 in palliative medicine. Support Care Cancer 2001 Sep; 9 (6): 442–51

    Article  PubMed  CAS  Google Scholar 

  12. Ereshefsky L. Antidepressant drug interaction considerations. Manag Care 2001 Aug; 10 (8 Suppl.): 10–3

    PubMed  CAS  Google Scholar 

  13. US Food and Drug Administration. Guidance for industry pharmacogenomic data submissions [online]. Available from URL: http://www.fda.gov/cder/guidance/6400nfl.htm [Accessed 2005 Aug 31]

    Google Scholar 

  14. Spina E, Scordo MG. Clinically significant drug interactions with antidepressants in the elderly. Drugs Aging 2002; 19 (4): 299–320

    Article  PubMed  CAS  Google Scholar 

  15. Lin EH, Von Korff M, Katon W, et al. The role of the primary care physician in patients’ adherence to antidepressant therapy. Med Care 1995; 33 (1): 67–74

    Article  PubMed  CAS  Google Scholar 

  16. Richelson E. Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc 1997; 72 (9): 835–47

    Article  PubMed  CAS  Google Scholar 

  17. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996 Mar; 153 (3): 311–20

    PubMed  CAS  Google Scholar 

  18. Ereshefsky L. Drug-drug interactions involving antidepressants: focus on venlafaxine. J Clin Psychopharmacol 1996; 16 (3 Suppl. 2): 37S–50S

    Article  PubMed  CAS  Google Scholar 

  19. Sindrup SH, Hofmann U, Asmussen J, et al. Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake. Eur J Clin Pharmacol 2005; 49 (6): 503–9

    Article  Google Scholar 

  20. Mikus G, Morike K, Griese EU, et al. Relevance of deficient CYP2D6 in opiate dependence. Pharmacogenetics 1998 Dec; 8 (6): 565–8

    Article  PubMed  CAS  Google Scholar 

  21. Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997 Oct; 7 (5): 375–9

    Article  PubMed  CAS  Google Scholar 

  22. Dalen P, Dahl ML, Ruiz ML, et al. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63 (4): 444–52

    Article  PubMed  CAS  Google Scholar 

  23. Lam YW, Gaedigk A, Ereshefsky L, et al. CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002 Aug; 22 (8): 1001–6

    Article  PubMed  CAS  Google Scholar 

  24. Ereshefsky L. Antidepressant pharmacodynamics, pharmacokinetics, and drug interactions. Geriatrics 1998; 53 Suppl. 4: 22–33

    Google Scholar 

  25. Xie HG, Kim RB, Wood AJ, et al. Molecular basis of ethnic differences in drug disposition and response. Ann Rev Pharmacol Toxicol 2001; 41: 815–50

    Article  CAS  Google Scholar 

  26. Shu Y, Cheng ZN, Liu ZQ, et al. Interindividual variations in levels and activities of cytochrome P-450 in liver microsomes of Chinese subjects. Acta Pharmacol Sin 2001 Mar; 22 (3): 283–8

    PubMed  CAS  Google Scholar 

  27. Anderson IM. SSRIs versus tricyclic antidepressants in depressed inpatients: a meta-analysis of efficacy and tolerability. Depress Anxiety 1998; 7 Suppl. 1: 11–7

    Article  PubMed  Google Scholar 

  28. Zajecka JM. Clinical issues in long-term treatment with antidepressants. J Clin Psychiatry 2000; 61 Suppl. 2: 20–5

    PubMed  Google Scholar 

  29. Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73 (3): 170–7

    Article  PubMed  CAS  Google Scholar 

  30. Burke WJ. Escitalopram. Expert Opin Investig Drugs 2002; 11 (10): 1477–86

    Article  PubMed  CAS  Google Scholar 

  31. Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001; 7 (3): 249–64

    Article  PubMed  CAS  Google Scholar 

  32. Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram: a review of pharmacological and clinical effects. J Psychiatry Neurosci 2000 May; 25 (3): 241–54

    PubMed  CAS  Google Scholar 

  33. Caccia S. Metabolism of the newest antidepressants: comparisons with related predecessors. IDrugs 2004 Feb; 7 (2): 143–50

    PubMed  CAS  Google Scholar 

  34. Hesse LM, Venkatakrishnan K, Court MH, et al. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 2000 Oct; 28 (10): 1176–83

    PubMed  CAS  Google Scholar 

  35. von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001 Aug; 29 (8): 1102–9

    Google Scholar 

  36. Clinically relevant drug interaction table. Indiana University Department of Medicine, Division of Clinical Pharmacology 2004 [online]. Available from URL: http://medicine.iupui.edu/flockhart/clinlist.htm [Accessed 2004; August 3]

    Google Scholar 

  37. Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 1992; 33 (5): 521–3

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi K, Chiba K, Yagi T, et al. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther 1997; 280 (2): 927–33

    PubMed  CAS  Google Scholar 

  39. Ring BJ, Eckstein JA, Gillespie JS, et al. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther 2001; 297 (3): 1044–50

    PubMed  CAS  Google Scholar 

  40. Carrillo JA, Dahl ML, Svensson JO, et al. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60 (2): 183–90

    Article  PubMed  CAS  Google Scholar 

  41. Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab Dispos 1999; 27 (7): 763–6

    PubMed  CAS  Google Scholar 

  42. Flockhart DA, Oesterheld JR. Cytochrome P450-mediated drug interactions. Child Adolesc Psychiatr Clin N Am 2000 Jan; 9 (1): 43–76

    PubMed  CAS  Google Scholar 

  43. Harvey AT, Preskorn SH. Fluoxetine pharmacokinetics and effect on CYP2C19 in young and elderly volunteers. J Clin Psychopharmacol 2001 April; 21 (2): 161–6

    Article  PubMed  CAS  Google Scholar 

  44. Bostwick JM. Dextromethorphan-induced manic symptoms in a bipolar patient on lithium. Psychosomatics 1996 Nov; 37 (6): 571–3

    Article  PubMed  CAS  Google Scholar 

  45. Clovis WL. Mania and cough syrup [letter]. J Clin Psychiatry 1993 May; 54 (5): 200

    PubMed  CAS  Google Scholar 

  46. Mendez MF. Mania self-induced with cough syrup. J Clin Psychiatry 1992 May; 53 (5): 173–4

    PubMed  CAS  Google Scholar 

  47. Polles A, Griffith JL. Dextromethorphan-induced mania. Psychosomatics 1996 Jan; 37 (1): 71–4

    Article  PubMed  CAS  Google Scholar 

  48. Schadel M, Romach MK, Sellers EM. Mania and cough syrup [letter]. J Clin Psychiatry 1993 May; 54 (5): 200

    PubMed  CAS  Google Scholar 

  49. Howard LA, Sellers EM, Tyndale RF. The role of pharmacogenetically-variable cytochrome P450 enzymes in drug abuse and dependence. Pharmacogenomics 2002 Mar; 3 (2): 185–99

    Article  PubMed  CAS  Google Scholar 

  50. Kennedy SH, McCann SM, Masellis M, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry 2002 Mar; 63 (3): 181–6

    Article  PubMed  CAS  Google Scholar 

  51. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations. J Clin Pharmacol 2000; 40 (1): 58–66

    Article  PubMed  CAS  Google Scholar 

  52. Amchin J, Ereshefsky L, Zarycranski W, et al. Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J Clin Pharmacol 2001; 41 (4): 443–51

    Article  PubMed  CAS  Google Scholar 

  53. Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996 Feb; 41 (2): 149–56

    Article  PubMed  CAS  Google Scholar 

  54. Effexor XR [package insert]. Collegeville (PA): Wyeth Pharmaceuticals, 2004

    Google Scholar 

  55. Cymbalta [package insert]. Indianapolis (IN): Eli Lilly and Company, 2004

  56. Prozac [package insert]. Indianapolis (IN): Eli Lilly and Company, 2003

  57. Zoloft [package insert]. New York (NY): Pfizer Laboratories, 2003

  58. Paxil [package insert]. Research Triangle Park (NC): Glaxo-SmithKline, 2002

  59. Lexapro [package insert]. St Louis (MO): Forest Laboratories, 2003

  60. Celexa [package insert]. St Louis (MO): Forest Laboratories, 2004

  61. Luvox [package insert]. Marietta (GA): Solvay Pharmaceuticals, 2001

  62. Puozzo C, Panconi E, Deprez D. Pharmacology and pharmacokinetics of milnacipran. Int Clin Psychopharmacol 2002 Jun; 17 Suppl. 1: S25–35

    Article  PubMed  Google Scholar 

  63. Kirchheiner J, Klein C, Meineke I, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003 Oct; 13 (10): 619–26

    Article  PubMed  CAS  Google Scholar 

  64. Spina E, Scordo MG, D’Arrigo C. Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol 2003 Oct; 17 (5): 517–38

    Article  PubMed  CAS  Google Scholar 

  65. Wienkers LC, Allievi C, Hauer MJ, et al. Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos 1999; 27 (11): 1334–40

    PubMed  CAS  Google Scholar 

  66. Fleishaker JC. Clinical pharmacokinetics of reboxetine, a selective norepinephrine reuptake inhibitor for the treatment of patients with depression. Clin Pharmacokinet 2000; 39 (6): 413–27

    Article  PubMed  CAS  Google Scholar 

  67. Sharma A, Goldberg MJ, Cerimele BJ. Pharmacokinetics and safety of duloxetine, a dual-serotonin and norepinephrine reuptake inhibitor. J Clin Pharmacol 2000; 40 (2): 161–7

    Article  PubMed  CAS  Google Scholar 

  68. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91

    Article  PubMed  CAS  Google Scholar 

  69. Mancama D, Kerwin RW. Role of pharmacogenomics in individualising treatment with SSRIs. CNS Drugs 2003; 17 (3): 143–51

    Article  PubMed  CAS  Google Scholar 

  70. Serretti A, Artioli P. The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics J 2004; 4 (4): 233–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

An educational grant for this study was provided by Wyeth Pharmaceuticals. Dr Grothe is an employee of Wyeth Pharmaceuticals. The other authors have no conflicts of interest that are directly relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Ereshefsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ereshefsky, L., Jhee, S. & Grothe, D. Antidepressant Drug-Drug Interaction Profile Update. Drugs in R D 6, 323–336 (2005). https://doi.org/10.2165/00126839-200506060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200506060-00002

Keywords

Navigation