Skip to main content
Log in

Contrast Agents for Cardiovascular Magnetic Resonance Imaging

Current Status and Future Directions

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) can provide a non-invasive combined diagnostic examination of different modalities including visualisation of vascular and cardiac anatomy and measurements of blood flow and left ventricular mass, function, perfusion and viability. Contrast agents for cardiovascular imaging are used to enhance the capability of MRI in assessing perfusion, tissue viability, infarction and vascular stenosis. Furthermore, contrast agents may be used for guiding procedures and therapies in the evolving field of interventional MRI such as angioplasty and delivery of genes and growth factors. Targeted MR contrast agents are needed to further improve the specificity of MRI and to monitor pathophysiological processes including necrosis, inflammation or angiogenesis. The research and development of MR contrast agents will continue at the cellular and molecular levels in the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

Notes

  1. 1The use of tradenames is for product identification only and does not imply endorsement.

References

  1. Lopez A. Assessing the burden ofmortality fromcardiovascular disease. World Health Stat Q 1993; 46: 91–6

    PubMed  CAS  Google Scholar 

  2. Murray C, Lopez A. Global comparative Assessments in the health sector. Geneva, Switzerland: World Health Organization, 1994: 1–196

    Google Scholar 

  3. Reeder SB, Du YP, Lima JA, Bluemke DA. Advanced cardiac MR imaging of ischemic heart disease. Radiographics 2001 Jul–Aug; 21 (4): 1047–1074

    PubMed  CAS  Google Scholar 

  4. Kramer CM. Integrated approach to ischemic heart disease. The one-stop shop. Cardiol Clin 1998 May; 16 (2): 267–76

    PubMed  CAS  Google Scholar 

  5. Runge VM. Trends in contrast media research. Invest Radiol 2001 Dec; 36 (12): 688–91

    PubMed  CAS  Google Scholar 

  6. Yang X, Atalar E. Intravascular MR imaging-guided balloon angioplasty with an MR imaging guide wire: feasibility study in rabbits. Radiology 2000 Nov; 217 (2): 501–6

    PubMed  CAS  Google Scholar 

  7. Kuehne T, Saeed M, Reddy G, et al. Sequential magnetic resonancemonitoring of pulmonary flow with endovascular stents placed across the pulmonary valve in growing Swine. Circulation 2001 Nov 6; 104 (19): 2363–8

    PubMed  CAS  Google Scholar 

  8. Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 2001 Oct 2; 104 (14): 1588–90

    PubMed  CAS  Google Scholar 

  9. Buecker A, Neuerburg JM, Adam GB, et al. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging 2000 Oct; 12 (4): 616–22

    PubMed  CAS  Google Scholar 

  10. Dion YM, Ben El Kadi H, Boudoux C, et al. Endovascular procedures under near-real-time magnetic resonance imaging guidance: an experimental feasibility study. J Vasc Surg 2000 Nov; 32 (5): 1006–14

    PubMed  CAS  Google Scholar 

  11. Serfaty JM, Atalar E, Declerck J, et al. Real-time projectionMR angiography: feasibility study. Radiology 2000 Oct; 217 (1): 290–5

    PubMed  CAS  Google Scholar 

  12. Enochs WS, Weissleder R. Organ- and tissue-directed MRI contrast agents. In: Edelman RR, Hesselink JR, Zlatkin MB. Clinicalmagnetic resonance imaging. 2nd edition 1996. W.B. Saunders Co., Philadelphia; 192–220

    Google Scholar 

  13. Cavagna FM, Maggioni F, Castelli PM, et al. Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 1997 Dec; 32 (12): 780–96

    PubMed  CAS  Google Scholar 

  14. Weinmann HJ, Brasch RC, Press WR, et al. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 1984 Mar; 142 (3): 619–24

    PubMed  CAS  Google Scholar 

  15. Fritz-Hansen T, Rostrup E, Sondergaard L, et al. Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 1998 Dec; 40 (6): 922–9

    PubMed  CAS  Google Scholar 

  16. Lauffer RB, Parmelee DJ, Dunham SU, et al. MS-325: albumintargeted contrast agent for MR angiography. Radiology 1998 May; 207 (2): 529–38

    PubMed  CAS  Google Scholar 

  17. Lauffer RB, Parmelee DJ, Ouellet HS, et al. MS-325: a smallmolecule vascular imaging agent for magnetic resonance imaging. Acad Radiol 1996 Aug; 3 Suppl. 2: S356–8

    PubMed  Google Scholar 

  18. Rohl L, Ostergaard L, Simonsen CZ, et al. NC100150-enhanced 3D-SPGR MR angiography of the common carotid artery in a pig vascular stenosis model. Quantification of stenosis and dose optimization. Acta Radiol 1999 May; 40 (3): 282–90

    PubMed  CAS  Google Scholar 

  19. Saeed M, Wendland MF, Engelbrecht M, et al. Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol 1998; 8 (6): 1047–53

    PubMed  CAS  Google Scholar 

  20. Verhoye M, van der Sanden BP, Rijken PF, et al. Assessment of the neovascular permeability in glioma xenografts by dynamic T (1) MRI with Gadomer-17. Magn Reson Med 2002 Feb; 47 (2): 305–13

    PubMed  Google Scholar 

  21. Misselwitz B, Schmitt-Willich H, Ebert W, et al. Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. MAGMA 2001 May; 12 (2–3): 128–34

    PubMed  CAS  Google Scholar 

  22. Kroft LJ, de Roos A. Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging 1999 Sep; 10 (3): 395–403

    PubMed  CAS  Google Scholar 

  23. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000 Aug; 35 (8): 460–71

    PubMed  CAS  Google Scholar 

  24. Jerosch-Herold M, Wilke N, Wang Y, et al. Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging 1999 Dec; 15 (6): 453–64

    PubMed  CAS  Google Scholar 

  25. Gerber BL, Bluemke DA, Chin BB, et al. Comparison between Gadomer -17 and gadolinium-DTPA for the assessment of myocardial perfusion using first pass MRI in a swine model of single vessel coronary artery stenosis [abstract]. Radiology 2000; 217 (Suppl.): 130

    Google Scholar 

  26. Wolf GL, Baum L. Cardiovascular toxicity and tissue proton T1 response tomanganese injection in the dog and rabbit. Am J Roentgenol 1983 Jul;141(1): 193–7

    CAS  Google Scholar 

  27. Bremerich J, Saeed M, Arheden H, et al. Normal and infarcted myocardium: differentiation with cellular uptake of manganese atMR imaging in a rat model. Radiology 2000 Aug; 216 (2): 524–30

    PubMed  CAS  Google Scholar 

  28. Pomeroy OH, Wendland M, Wagner S, et al. Magnetic resonance imaging of acute myocardial ischemia using a manganese chelate, Mn-DPDP. Invest Radiol 1989 Jul; 24 (7): 531–6

    PubMed  CAS  Google Scholar 

  29. Saeed M, Wagner S, Wendland MF, et al. Occlusive and reperfused myocardial infarcts: differentiation with Mn- DPDP—enhanced MR imaging. Radiology 1989 Jul; 172 (1): 59–64

    PubMed  CAS  Google Scholar 

  30. Wendland MF, Krombach GA, Higgins CB, et al. Contrast enhanced MRI of stunned myocardium using Mn-based MRI contrast media. Acad Radiol 2002; 9 (Suppl. 2): 341–2

    Google Scholar 

  31. Pislaru SV, Ni Y, Pislaru C, et al. Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 1999 Feb 9; 99 (5): 690–6

    PubMed  CAS  Google Scholar 

  32. Saeed M, Bremerich J, Wendland MF, et al. Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 1999 Oct; 213 (1): 247–57

    PubMed  CAS  Google Scholar 

  33. Lund GK, Higgins CB, Wendland MF, et al. Assessment of nicorandil therapy in ischemic myocardial injury by using contrast-enhanced and functional MR imaging. Radiology 2001 Dec; 221 (3): 676–82

    PubMed  CAS  Google Scholar 

  34. Barkhausen J, Ebert W, Debatin JF, et al. Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 2002 Apr 17; 39 (8): 1392–8

    PubMed  CAS  Google Scholar 

  35. Saeed M, Lee R, Martin A, et al. Feasibilty of transcatheter delivery of therapeutics to the myocardium using dual x-ray-MR imaging [abstract]. Honolulu: ISMRM, 2002: 340

    Google Scholar 

  36. Weissleder R, Lee AS, Khaw BA, et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 1992 Feb; 182 (2): 381–5

    PubMed  CAS  Google Scholar 

  37. Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001 Sep 11; 104 (11): 1280–5

    PubMed  CAS  Google Scholar 

  38. Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001 Jan 23; 103 (3): 415–22

    PubMed  CAS  Google Scholar 

  39. Crouse III JR. Predictive value of carotid 2-dimensional ultrasound. Am J Cardiol 2001 Jul 19; 88 (2-A): E27–30

    Google Scholar 

  40. Sun K, Takasu J, Yamamoto R, et al. Assessment of aortic atherosclerosis and carotid atherosclerosis in coronary artery disease. Jpn Circ J 2000 Oct; 64 (10): 745–9

    PubMed  CAS  Google Scholar 

  41. Wayhs R, Zelinger A, Raggi P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 2002 Jan 16; 39 (2): 225–30

    PubMed  Google Scholar 

  42. Newman AB, Naydeck BL, Sutton-Tyrrell K, et al. Coronary artery calcification in older adults to age 99: prevalence and risk factors. Circulation 2001 Nov 27; 104 (22): 2679–84

    PubMed  CAS  Google Scholar 

  43. Hunold P, Schmermund A, Seibel RM, et al. Prevalence and clinical significance of accidental findings in electron-beam tomographic scans for coronary artery calcification. Eur Heart J 2001 Sep; 22 (18): 1748–58

    PubMed  CAS  Google Scholar 

  44. Keelan PC, Bielak LF, Ashai K, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 2001 Jul 24; 104 (4): 412–7

    PubMed  CAS  Google Scholar 

  45. Obuchowski NA, Modic MT, Magdinec M, et al. Assessment of the efficacy of noninvasive screening for patients with asymptomatic neck bruits. Stroke 1997 Jul; 28 (7): 1330–9

    PubMed  CAS  Google Scholar 

  46. Botnar RM, Stuber M, Kissinger KV, et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000 Nov 21; 102 (21): 2582–7

    PubMed  CAS  Google Scholar 

  47. Ruehm SG, Goyen M, Barkhausen J, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001 Apr 7; 357 (9262): 1086–91

    PubMed  CAS  Google Scholar 

  48. Meaney JF, Ridgway JP, Chakraverty S, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 1999 Apr; 211 (1): 59–67

    PubMed  CAS  Google Scholar 

  49. Prince MR. Gadolinium-enhancedMR aortography. Radiology 1994 Apr; 191 (1): 155–64

    PubMed  CAS  Google Scholar 

  50. Hoch JR, Tullis MJ, Kennell TW, et al. Use of magnetic resonance angiography for the preoperative evaluation of patients with infrainguinal arterial occlusive disease. J Vasc Surg 1996 May; 23 (5): 792–801

    PubMed  CAS  Google Scholar 

  51. Carpenter JP, Baum RA, Holland GA, et al. Peripheral vascular surgery with magnetic resonance angiography as the sole preoperative imaging modality. J Vasc Surg 1994 Dec; 20 (6): 861–71

    PubMed  CAS  Google Scholar 

  52. Winterer JT, Schaefer O, Uhrmeister P, et al. Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 2002 Feb; 41 (2): 153–60

    PubMed  Google Scholar 

  53. Holmqvist C, Stahlberg F, Hanseus K, et al. Collateral flow in coarctation of the aorta with magnetic resonance velocity mapping: correlation to morphological imaging of collateral vessels. J Magn Reson Imaging 2002 Jan; 15 (1): 39–46

    PubMed  Google Scholar 

  54. Bogaert J, Kuzo R, Dymarkowski S, et al. Follow-up of patients with previous treatment for coarctation of the thoracic aorta: comparison between contrast-enhancedMR angiography and fast spin-echo MR imaging. Eur Radiol 2000; 10 (12): 1847–54

    PubMed  CAS  Google Scholar 

  55. Chung T. Assessment of cardiovascular anatomy in patients with congenital heart disease bymagnetic resonance imaging. Pediatr Cardiol 2000 Jan–Feb; 21 (1): 18–26

    PubMed  CAS  Google Scholar 

  56. Amundsen T, Kvaerness J, Jones RA, et al. Pulmonary embolism: detection with MR perfusion imaging of lung—a feasibility study. Radiology 1997 Apr; 203 (1): 181–5

    PubMed  CAS  Google Scholar 

  57. Moody AR, Liddicoat A, Krarup K. Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli. Invest Radiol 1997 Aug; 32 (8): 431–40

    PubMed  CAS  Google Scholar 

  58. Berthezene Y, Croisille P, Wiart M, et al. Prospective comparison of MR lung perfusion and lung scintigraphy. J Magn Reson Imaging 1999 Jan; 9 (1): 61–8

    PubMed  CAS  Google Scholar 

  59. Mai VM, Bankier AA, Prasad PV, et al. MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J Magn Reson Imaging 2001 Nov; 14 (5): 574–9

    PubMed  CAS  Google Scholar 

  60. Nakagawa T, Sakuma H, Murashima S, et al. Pulmonary ventilation-perfusionMR imaging in clinical patients. J Magn Reson Imaging 2001 Oct; 14 (4): 419–24

    PubMed  CAS  Google Scholar 

  61. Bremerich J, Roberts TP, Wendland MF, et al. Three-dimensional MR imaging of pulmonary vessels and parenchyma with NC100150 injection (Clariscan). J Magn Reson Imaging 2000 Jun; 11 (6): 622–8

    PubMed  CAS  Google Scholar 

  62. Abolmaali ND, Hietschold V, Appold S, et al. Gadomer-17-enhanced 3D navigator-echoMR angiography of the pulmonary arteries in pigs. Eur Radiol 2002 Mar; 12 (3): 692–7

    PubMed  Google Scholar 

  63. Zheng J, Carr J, Harris K, et al. Three-dimensional MR pulmonary perfusion imaging and angiography with an injection of a new blood pool contrast agent B-22956/1. J Magn Reson Imaging 2001 Oct; 14 (4): 425–32

    PubMed  CAS  Google Scholar 

  64. Mistretta CA, Grist TM. X-ray digital subtraction angiography to magnetic resonance-digital subtraction angiography using three-dimensional TRICKS. Historical perspective and computer simulations: a review. Invest Radiol 1998 Sep; 3 (9): 496–505

    Google Scholar 

  65. Yu X, Song SK, Chen J, et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 2000 Dec; 44 (6): 867–72

    PubMed  CAS  Google Scholar 

  66. Huber ME, Oelhafen ME, Kozerke S, et al. Single breath-hold extended free-breathing navigator-gated three-dimensional coronary MRA. J Magn Reson Imaging 2002 Feb; 15 (2): 210–4

    PubMed  Google Scholar 

  67. Stuber M, Botnar RM, Danias PG, et al. Breathhold three-dimensional coronary magnetic resonance angiography using real-time navigator technology. J Cardiovasc Magn Reson 1999; 1 (3): 233–8

    PubMed  CAS  Google Scholar 

  68. Taylor AM, Keegan J, Jhooti P, et al. Calculation of a subjectspecific adaptive motion-correction factor for improved realtime navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson 1999; 1 (2): 131–8

    PubMed  CAS  Google Scholar 

  69. Nikolaou K, Huber A, Knez A, Scheidler J, Petsch R, Reiser M. Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: reduction of scan time using a slice interpolation technique. J Comput Assist Tomogr 2001 May–Jun; 25 (3): 378–387

    PubMed  CAS  Google Scholar 

  70. Molinari G, Sardanelli F, Zandrino F, et al. Value of navigator echo magnetic resonance angiography in detecting occlusion/ patency of arterial and venous, single and sequential coronary bypass grafts. Int J Card Imaging 2000 Jun; 16 (3): 149–60

    PubMed  CAS  Google Scholar 

  71. Ho VB, Foo TK, Arai AE, et al. Gadolinium-enhanced, vesseltracking, two-dimensional coronaryMR angiography: singledose arterial-phase vs. delayed-phase imaging. J Magn Reson Imaging 2001 May; 13 (5): 682–9

    PubMed  CAS  Google Scholar 

  72. Sandstede JJ, Pabst T, Wacker C, et al. Breath-hold 3D MR coronary angiography with a new intravascular contrast agent (feruglose)—first clinical experiences. Magn Reson Imaging 2001 Feb; 19 (2): 201–5

    PubMed  CAS  Google Scholar 

  73. Klein C, Nagel E, Schnackenburg B, et al. The intravascular contrast agent Clariscan (NC 100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 2000 Nov; 11 (1-2): 65–7

    PubMed  CAS  Google Scholar 

  74. Li D, Zheng J, Weinmann HJ. Contrast-enhanced MR imaging of coronary arteries: comparison of intra- and extravascular contrast agents in swine. Radiology 2001 Mar; 218 (3): 670–8

    PubMed  CAS  Google Scholar 

  75. Rose SC, Zwiebel WJ, Nelson BD, et al. Symptomatic lower extremity deep venous thrombosis: accuracy, limitations, and role of color duplex flow imaging in diagnosis. Radiology 1990 Jun; 175 (3): 639–44

    PubMed  CAS  Google Scholar 

  76. Ruehm SG, Wiesner W, Debatin JF. Pelvic and lower extremity veins: contrast-enhanced three-dimensional MR venography with a dedicated vascular coil-initial experience. Radiology 2000 May; 215 (2): 421–7

    PubMed  CAS  Google Scholar 

  77. Boeve WJ, Kok T, Haagsma EB, et al. Superior diagnostic strength of combined contrast enhancedMR-angiography and MR-imaging compared to intra-arterial DSA in liver transplantation candidates. Magn Reson Imaging 2001 Jun; 19 (5): 609–22

    PubMed  CAS  Google Scholar 

  78. Schalla S, Nagel E, Lehmkuhl H, et al. Comparison of magnetic resonance real-time imaging of left ventricular function with conventional magnetic resonance imaging and echocardiography. Am J Cardiol 2001 Jan 1; 87 (1): 95–9

    PubMed  CAS  Google Scholar 

  79. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999 Feb 16; 99 (6): 763–70

    PubMed  CAS  Google Scholar 

  80. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999 Nov 9; 100 (19): 1992–2002

    PubMed  CAS  Google Scholar 

  81. Kim RJ, Hillenbrand HB, Judd RM. Evaluation of myocardial viability by MRI. Herz 2000 Jun; 25 (4): 417–30

    PubMed  CAS  Google Scholar 

  82. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessmentwith multisection, quantitative, firstpass MR imaging. Radiology 1997 Aug; 204 (2): 373–84

    PubMed  CAS  Google Scholar 

  83. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000 Mar 28; 101 (12): 1379–83

    PubMed  CAS  Google Scholar 

  84. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001 May 8; 103 (18): 2230–5

    PubMed  CAS  Google Scholar 

  85. Kraitchman DL, Chin BB, Heldman AW, et al. MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J Magn Reson Imaging 2002 Feb; 15 (2): 149–58

    PubMed  Google Scholar 

  86. Arheden H, Saeed M, Higgins CB, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echoplanar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 1999 Jun; 211 (3): 698–708

    PubMed  CAS  Google Scholar 

  87. Arheden H, Saeed M, Higgins CB, et al. Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with echo-planarMR imaging. Radiology May 2000; 215 (2): 520–8

    PubMed  CAS  Google Scholar 

  88. Fieno DS, Kim RJ, Chen EL, et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000 Nov 15; 36 (6): 1985–91

    PubMed  CAS  Google Scholar 

  89. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002 Jan 15; 105 (2): 162–7

    PubMed  Google Scholar 

  90. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000 Nov 16; 343 (20): 1445–53

    PubMed  CAS  Google Scholar 

  91. Oshinski JN, Yang Z, Jones JR, et al. Imaging time after Gd- DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 2001 Dec 4; 104 (23): 2838–42

    PubMed  CAS  Google Scholar 

  92. Saeed M, Lund G, Wendland MF, et al. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarctionwith necrosis-specific and extracellular nonspecific contrastmedia. Circulation 2001 Feb 13; 103 (6): 871–6

    PubMed  CAS  Google Scholar 

  93. Passamani E, Davis KB, Gillespie MJ, et al. A randomized trial of coronary artery bypass surgery. Survival of patients with a low ejection fraction. N Engl J Med 1985 Jun 27; 312 (26): 1665–71

    PubMed  CAS  Google Scholar 

  94. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989 Jan; 117 (1): 211–21

    PubMed  CAS  Google Scholar 

  95. Horie H, Takahashi M, Minai K, et al. Long-term beneficial effect of late reperfusion for acute anterior myocardial infarction with percutaneous transluminal coronary angioplasty. Circulation 1998 Dec 1; 98 (22): 2377–82

    PubMed  CAS  Google Scholar 

  96. Diesbourg LD, Prato FS, Wisenberg G, et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 1992 Feb; 23 (2): 239–53

    PubMed  CAS  Google Scholar 

  97. Saeed M, Higgins CB, Geschwind JF, et al. T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo-planar MR imaging. Eur Radiol 2000; 10 (2): 310–8

    PubMed  CAS  Google Scholar 

  98. Wendland MF, Saeed M, Lund G, et al. Contrast-enhancedMRI for quantification of myocardial viability. J Magn Reson Imaging 1999 Nov; 10 (5): 694–702

    PubMed  CAS  Google Scholar 

  99. Dymarkowski S, Ni Y, Miao Y, et al. Value of T2-Weighted Magnetic Resonance Imaging Early After Myocardial Infarction in Dogs: Comparison With Bis-Gadolinium-Mesoporphyrin Enhanced T1-Weighted Magnetic Resonance Imaging and Functional Data From Cine Magnetic Resonance Imaging. Invest Radiol 2002 Feb; 37 (2): 77–85

    PubMed  Google Scholar 

  100. Ni Y, Pislaru C, Bosmans H, et al. Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 2001; 11 (5): 876–83

    PubMed  CAS  Google Scholar 

  101. Jeong AK, Choi SI, Kim DH, et al. Evaluation by contrast-enhanced MR imaging of the lateral border zone in reperfused myocardial infarction in a cat model. Korean J Radiol 2001 Jan-Mar; 2 (1): 21–27

    Google Scholar 

  102. Brurok H, Skoglund T, Berg K, et al. Myocardial manganese elevation and proton relaxivity enhancement withmanganese dipyridoxyl diphosphate. Ex vivo assessments in normally perfused and ischemic guinea pig hearts. NMR Biomed 1999 Oct; 12 (6): 364–72

    PubMed  CAS  Google Scholar 

  103. De Roos A, van Rossum AC, van der Wall E, et al. Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA—enhanced MR imaging. Radiology 1989 Sep; 172 (3): 717–20

    PubMed  Google Scholar 

  104. De Roos A, Matheijssen NA, Doornbos J, et al. Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhancedMR imaging. Radiology 1990 Aug; 176 (2): 517–21

    PubMed  Google Scholar 

  105. Van Rossum AC, Visser FC, Van Eenige MJ, et al. Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 1990 Apr 1; 65 (13): 845–51

    PubMed  Google Scholar 

  106. Pearlman JD, Laham RJ, Simons M. Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation—preliminary study in pigs. Radiology 2000 Mar; 214 (3): 801–7

    PubMed  CAS  Google Scholar 

  107. Lauerma K, Saeed M, Wendland MF, et al. Verapamil reduces the size of reperfused ischemically injured myocardium in hypertrophied rat hearts as assessed by magnetic resonance imaging. Am Heart J 1996 Jan; 131 (1): 14–23

    PubMed  CAS  Google Scholar 

  108. Watzinger N, Saeed M, Wendland MF, et al. Myocardial viability: magnetic resonance assessment of functional reserve and tissue characterization. J Cardiovasc Magn Reson 2001; 3 (3): 195–208

    PubMed  CAS  Google Scholar 

  109. Serfaty JM, Yang X, Aksit P, et al. Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time. J Magn Reson Imaging 2000 Oct; 12 (4): 590–4

    PubMed  CAS  Google Scholar 

  110. Moats R, Fraser S, Meade T. A smart magnetic resonance imaging agent that reports on specific enzymatic activity. Angew Chem Int Ed Engl 1997; 36: 726–8

    CAS  Google Scholar 

  111. Pomper M. Molecular imaging: An overview. Acad Radiol 2001; 8: 1141–53

    PubMed  CAS  Google Scholar 

  112. Spuentrup E, Ruebben A, Schaeffter T, et al. Magnetic resonance— guided coronary artery stent placement in a swine model. Circulation 2002 Feb 19; 105 (7): 874–9

    PubMed  Google Scholar 

  113. Kuehne T, Saeed M, Moore P, et al. Influence of blood-pool contrast media on MR imaging and flow measurements in the presence of pulmonary arterial stents in swine. Radiology 2002 May; 223 (2): 439–45

    PubMed  Google Scholar 

  114. Folkman J. Angiogenic therapy of the human heart. Circulation 1998 Feb 24; 97 (7): 628–9

    PubMed  CAS  Google Scholar 

  115. Lazarous DF, Shou M, Scheinowitz M, et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996 Sep 1; 94 (5): 1074–82

    PubMed  CAS  Google Scholar 

  116. Tanaka E, Hattan N, Ando K, et al. Amelioration of microvascular myocardial ischemia by gene transfer of vascular endothelial growth factor in rabbits. J Thorac Cardiovasc Surg 2000 Oct; 120 (4): 720–8

    PubMed  CAS  Google Scholar 

  117. Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 2000 Dec; 36 (7): 2132–9

    PubMed  CAS  Google Scholar 

  118. Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999 Nov 2; 100 (18): 1865–71

    PubMed  CAS  Google Scholar 

  119. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999 Aug 3; 100 (5): 468–74

    PubMed  CAS  Google Scholar 

  120. Vale PR, Losordo DW, Milliken CE, et al. Randomized, singleblind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001 May 1; 103 (17): 2138–43

    PubMed  CAS  Google Scholar 

  121. Henry TD, Rocha-Singh K, Isner JM, et al. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J 2001 Nov; 142 (5): 872–80

    PubMed  CAS  Google Scholar 

  122. Lederman RJ, Guttman MA, Peters DC, et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002 Mar 19; 105 (11): 1282–4

    PubMed  Google Scholar 

Download references

Acknowledgements

Simon Schalla is supported by a grant from the German Cardiac Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maythem Saeed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schalla, S., Higgins, C.B. & Saeed, M. Contrast Agents for Cardiovascular Magnetic Resonance Imaging. Drugs R&D 3, 285–302 (2002). https://doi.org/10.2165/00126839-200203050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200203050-00001

Keywords

Navigation