Skip to main content
Log in

Recent Developments and Emerging Therapies for Type 2 Diabetes Mellitus

  • Section 1: Type 2 Diabete Mellitus
  • Leading Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Most patients with type 2 (non-insulin-dependent) diabetes mellitus require pharmacotherapy, initially as monotherapy and subsequently in combination, as adjuncts to diet and exercise. Exogenous insulin is ultimately required in a substantial proportion, reflecting the progressive natural history of the disease. Sulphonylureas and biguanides have been employed for over 4 decades as oral antidiabetic agents, but they have a limited capacity to provide long term glycaemic control and can cause serious adverse effects. Thus, more efficacious and tolerable antidiabetic agents are required.

Recent years have witnessed the introduction of agents with novel modes of action, that is, the α-glucosidase inhibitors acarbose and miglitol (which reduce postprandial hyperglycaemia) and the first of the thiazolidinedione insulinsensitising drugs — troglitazone and rosiglitazone. Although the former has been withdrawn in some countries due to adverse effects, another ‘glitazone’ pioglitazone is expected to be approved in the near future. Other recently introduced drugs include glimepiride and the meglitinide insulin secretagogue, repaglinide. Attention is also focusing increasingly on combination therapy using insulin together with sulphonylureas, metformin or troglitazone. Rapid-acting insulin analogues are now being used as alternatives to conventional insulins; their role in the management of type 2 diabetes mellitus is presently uncertain but reports of a reduced frequency of hypoglycaemia are encouraging.

The development of new drugs aims to counter the principal metabolic defects of the disorder, respectively, relative insulin deficiency and insulin resistance. Novel classes of rapid-acting secretagogues under evaluation include the morphilinoguanide BTS 67582 and the meglitinides mitiglinide (KAD 1229) and senaglinide (A-4166). Succinate ester derivatives represent a potential novel approach to improving β-cell function through enhancement of insulin biosynthesis and secretion. Enhancement of nutrient-induced insulin secretion is a mechanism with several putative targets within the β-cell; potentiators of insulin secretion include glucagon-like peptide-1 and its analogues, phosphodiesterase inhibitors and the imidazoline derivative PMS 812 (S 21663). The amylin agonist pramlintide slows gastric emptying and suppression of glucagon secretion. Nonthiazolidinedione insulin-sensitising agents include the γ-receptor agonist G 1262570X (GG 570) and D-chiro-inositol. Insulin analogues with prolonged action and inhaled insulin preparations are also under investigation. Insulin-mimetic agents include organic vanadium compounds.

Whether newer agents will offer clinically relevant efficacy and tolerability advantages over existing therapies remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992; 15: 318–68

    Article  PubMed  CAS  Google Scholar 

  2. Groop LC. Drug treatment of noninsulin-dependent diabetes mellitus. In: Pickup JC, Williams G, et al. editors. Textbook of diabetes. Oxford: Blackwell Science, 1997; 38: 1–18

    Google Scholar 

  3. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  4. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–65

    Article  Google Scholar 

  5. Evans A, Krentz AJ. Glimepiride — a new sulphonylurea. Prescriber 1999; 10: 51–8

    Google Scholar 

  6. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41

    Article  PubMed  CAS  Google Scholar 

  7. Day C. Thiazolidinediones: a new class of oral antidiabetic drugs. Diabet Med 1999; 16: 179–92

    Article  PubMed  CAS  Google Scholar 

  8. Campbell I. Repaglinide: a new short-acting hypoglycaemic agent. Prescriber 1999; 10: 39–43

    Google Scholar 

  9. Barnett AH, Owens DR. Insulin analogues. Lancet 1997; 349: 47–51

    Article  PubMed  CAS  Google Scholar 

  10. Campbell RK. Glimepiride: role of a new sulfonylurea in the treatment of type 2 diabetes mellitus. Ann Pharmacol 1998; 32: 1044–52

    Article  CAS  Google Scholar 

  11. Klepzig H, Kober G, Matter C et al. Sulfonylureas and ischaemic preconditioning: a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999; 20: 439–46

    Article  PubMed  CAS  Google Scholar 

  12. Krentz AJ. UKPDS and beyond: into the next millennium. Diabetes Obesity Metab 1999; 1: 13–22

    Article  CAS  Google Scholar 

  13. Goldberg RB, Einhorn D, Lucas CP, et al. A randomized placebo- controlled trial of repaglinide in the treatment of type 2 diabetes mellitus. Diabetes Care 1998; 21: 1897–903

    Article  PubMed  CAS  Google Scholar 

  14. Moses R, Sloboniuk R, Boyages S, et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 1999; 22: 119–24

    Article  PubMed  CAS  Google Scholar 

  15. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–9

    Article  PubMed  CAS  Google Scholar 

  16. Chan NN, Brian HP, Feher MD. Metformin-associated lactic acidosis. Arare or very rare clinical entity? DiabetMed 1999; 16: 273–81

    CAS  Google Scholar 

  17. Nestler JE, Jakubowicz DJ, Evans WS, et al. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med 1998; 338: 1876–80

    Article  PubMed  CAS  Google Scholar 

  18. Fujimoto Y, Ohhira M, Miyokawa N, et al. Acarbose-induced hepatic injury. Lancet 1998; 351: 340–1

    Article  PubMed  CAS  Google Scholar 

  19. Holman RR, Cull CA, Turner RC, UKPDS Study Group. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycaemic control over 3 years (UKProspective Diabetes Study 44). Diabetes Care 1999; 22: 960–4

    Article  PubMed  CAS  Google Scholar 

  20. Segal P, Feig PU, Schernaner G, et al. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 1997; 20: 687–91

    Article  PubMed  CAS  Google Scholar 

  21. Rybka J, Goke B, Sissmann J. European comparative study of two alpha-glucosidase inhibitors, miglitol and acarbose. Diabetes 1999; 48 Suppl. 1: 433

    Google Scholar 

  22. Goke B, Fuder H, Wiekhorst G, et al. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor andmobilises the endogenous GLP-1 reserve. Digestion 1995; 56: 493–501

    Article  PubMed  CAS  Google Scholar 

  23. Riddle MC. Learning to use troglitazone. Diabetes Care 1998; 21: 1389–91

    Article  PubMed  CAS  Google Scholar 

  24. Plosker GL, Faulds D. Troglitazone: a review of its use in the management of type 2 diabetesmellitus. Drugs 1999; 57: 409–38

    Article  PubMed  CAS  Google Scholar 

  25. Donnelly R. FDAreviews troglitazone. Diabetes Obesity Metab 1999; 1: 65–6

    Article  CAS  Google Scholar 

  26. Barman Balfour JA, Plosker GL. Rosiglitazone. Drugs 1999; 57: 921–30

    Article  Google Scholar 

  27. Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22: 288–93

    Article  PubMed  CAS  Google Scholar 

  28. Mori YU, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22: 908–12

    Article  PubMed  CAS  Google Scholar 

  29. Evans A, Krentz AJ. Benefits and risks of transfer from oral antidiabetic agents to insulin in type 2 diabetes. Drug Saf 1999; 21 (2): 7–22

    Article  PubMed  CAS  Google Scholar 

  30. Yki-Järvinen H, Ryysy L, Nikkilä KTulokas T, et al. Comparison of bedtime insulin regimens in patients with type 2 diabetesmellitus. Arandomized, controlled trial. Ann Intern Med 1999; 130: 389–96

    PubMed  Google Scholar 

  31. Anderson Jr JH, Brunelle R, Keohane P, et al. Insulin analogue improves mealtime treatment of NIDDM patients. Arch Intern Med 1997; 157: 1249–55

    Article  PubMed  CAS  Google Scholar 

  32. Bruttomesso D, Pianta A, Mari A, et al. Restoration of early rise in plasma insulin levels improves glucose tolerance of type 2 diabetic patients. Diabetes 1999; 48: 99–105

    Article  PubMed  CAS  Google Scholar 

  33. Amiel SA. Learning to use a new drug — the fast-acting insulin analogues. Diabet Med 1998; 15: 537–8

    Article  PubMed  CAS  Google Scholar 

  34. Koivisto VA, Tuominen JA, Ebeling P. Lispro Mix25 insulin as premeal therapy in type 2 diabetic patients. Diabetes Care 1999; 22: 459–62

    Article  PubMed  CAS  Google Scholar 

  35. Roach P, Trautmann MI, Anderson JH and the LM Study Group. Lower incidence of nocturnal hypoglycemia during treatment with a novel protamine-based formulation of insulin lispro. Diabetes 1998; 47 Suppl. 1: A92

    Google Scholar 

  36. Jorgensen S, Vaag A, Langkjaer L, et al. Novosol basal: pharmacokinetics of a novel soluble long acting insulin analogue. BMJ 1989; 299: 415–9

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann L, Sinha K, Weyer C, et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet Med 1999; 16: 332–8

    Google Scholar 

  38. Brunner GA, Sendlhofer G, Wutte A, et al. Pharmacokinetic and pharmacodynamic properties of insulin analog NN304 in comparison to NPH insulin in humans. Diabetes 1999; 48 Suppl. 1: A102

    Google Scholar 

  39. Bahr M, Kolter T, Seipke G, et al. Growth-promoting and metabolic activity of the human insulin analogue [GlyA21,-ArgB31,Arg B32]insulin (HOE 901) in muscle cells. Eur J Phamacol 1997; 320: 259–65

    Article  CAS  Google Scholar 

  40. Gershonov E, Schecter Y, Fridkin M. New concept for long-acting insulin. Spontaneous conversion of an inactive modified insulin to the active hormone in circulation: 9-fluoroenylmethoxylcarbonyl derivative of insulin. Diabetes 1999; 48: 1437–42

    Article  PubMed  CAS  Google Scholar 

  41. Jacobs MAJM, Schreuder RH, Jap-a-Joe K, et al. The pharmacodynamics and activity of intranasally administered insulin in healthy male volunteers. Diabetes 1993; 42: 1649–55

    Article  PubMed  CAS  Google Scholar 

  42. Trehan A, Ali A. Recent approaches in insulin delivery. Drug Devel Ind Pharm 1998; 24: 569–97

    Article  Google Scholar 

  43. Fulcher GR, Walker M, Farrer M, et al. Acipimocx increases glucose disposal in normal man independent of changes in plasma non-esterified fatty acid concentration and whole body lipid oxidation. Metabolism 1993; 42: 308–14

    Article  PubMed  CAS  Google Scholar 

  44. Jones IR, Swai A, Taylor R, et al. Lowering of plasma glucose concentrations with bezafibrate in patients with moderately controlled NIDDM. Diabetes Care 1990; 13: 855–63

    Article  PubMed  CAS  Google Scholar 

  45. Foley JE. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care 1992; 15: 773–84

    Article  PubMed  CAS  Google Scholar 

  46. Ratheiser K, Schneewiess B, Waldhäusl W, et al. inhibition by etomoxir of carnitine palmitolytransferase I reduces hepatic glucose production and plasma lipids in non-insulin dependent diabetes mellitus. Metabolism 1991; 40: 1185–90

    Article  PubMed  CAS  Google Scholar 

  47. Hubinger A, Knode O, Susanto F, et al. Effects of the carnitineaclytransferase inhibitor etomoxir on insulin sensitivity, energy expenditure and substrate oxidation in NIDDM. Horm Metab Res 1997; 29: 436–9

    Article  PubMed  Google Scholar 

  48. Davies RR, Turner SJ, Alberti KGMM, et al. Somatostatin analogues in diabetes mellitus. Diabet Med 1989; 6: 103–11

    Article  PubMed  CAS  Google Scholar 

  49. Unson CG, MacDonald D, Ray K, et al. Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. J Biol Chem 1991; 266: 2763–6

    PubMed  CAS  Google Scholar 

  50. Coleman DL. Hypoglycaemic action of the aetiocholanolones in mice. In: Bailey CJ, Flatt PR, editors. New antidiabetic drugs. London: Smith-Gordon, 1990: 191–6

    Google Scholar 

  51. Hollander PA, Elbein SC, Hirsch IB, et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. Diabetes Care 1998; 21: 1288–94

    Article  PubMed  CAS  Google Scholar 

  52. Scheen AJ, Paolisso G, Salvatore T, et al. Improvement of insulin- induced glucose disposal in obese patients with NIDDM after 1-week treatment with d-fenfluramine. Diabetes Care 1991; 14: 325–32

    Article  PubMed  CAS  Google Scholar 

  53. McNeely W, Goa KL. Sibutramine: a review of its contribution to the management of obesity. Drugs 1998; 56: 1093–124

    Article  PubMed  CAS  Google Scholar 

  54. Howe R. Beta-3 adrenergic agonists. Drugs Future 1993; 18: 529–49

    Google Scholar 

  55. Leonardt M, Hrupka B, Langhans W. New approaches in the pharmacological treatment of obesity. Eur J Nutr 1999; 38: 1–13

    Article  Google Scholar 

  56. Krentz AJ, Evans A. Selective imidazoline receptor agonists for metabolic syndrome. Lancet 1998; 351: 152–3

    Article  PubMed  CAS  Google Scholar 

  57. Page T, Bailey CJ. Glucose-lowering effect of BTS 67 582. Br J Pharmacol 1997; 122: 1464–8

    Article  PubMed  CAS  Google Scholar 

  58. Jones RB, Dickinson K, Anthony DM, et al. Evaluation of BTS 67 582, a novel antidiabetic agent, in normal and diabetic rats. Br J Pharmacol 1997; 120: 1135–43

    Article  PubMed  CAS  Google Scholar 

  59. Skillman CA, Raskin P. A double-masked placebo-controlled trial assessing effects of various doses of BTS 67,582, a novel insulinotropic agent, on fasting hyperglycaemia in NIDDM patients. Diabetes Care 1997; 20: 591–6

    Article  PubMed  CAS  Google Scholar 

  60. Malaisse WJ. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res 1995; 27: 263–6

    Article  PubMed  CAS  Google Scholar 

  61. Ikenoue T, Akiyoshi M, Fujitani S, et al. Hypoglycaemic and insulinotropic effects of a novel oral antidiabetic agent, (−)- N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166). Br J Pharmacol 1997; 120: 137–45

    Article  PubMed  CAS  Google Scholar 

  62. Hirschberg Y, McLeod J, Gareffa S, et al. Pharmacodynamics and dose response of nateglinide in type 2 diabetics [abstract]. Diabetes 1999; 48 Suppl. 1: A100

    Google Scholar 

  63. MacDonald MJ, Fahien LA. Glyceraldehyde phosphate and methyl esters of succinic acid. Two new potential insulin secretagogues. Diabetes 1988; 37: 997–9

    Article  PubMed  CAS  Google Scholar 

  64. Malaisse WJ. The esters of carboxylic nutrients as insulinotropic tools in non-insulin-dependent diabetes mellitus. Gen Pharmacol 1995; 26: 1133–41

    Article  PubMed  CAS  Google Scholar 

  65. Ladriere L, Verbrugeen I, Grue-Sorensen G, et al. Metabolism of [1,3-13C]glycerol-1,2,3-tris(methylsuccinate) and glycerol- 1,2,3-tris(methyl[2,3-13C]succinate) in hepatocytes from Goto-Kakizaki rats. Int J Mol Med 1999; 3: 285–9

    PubMed  CAS  Google Scholar 

  66. Thorens B, Waeber G. Glucagon-like peptide-1 and the control of insulin secretion in the normal state and in NIDDM. Diabetes 1993; 42: 1219–25

    Article  PubMed  CAS  Google Scholar 

  67. Nauk MA. Is glucagon-like peptide 1 an incretin hormone? Diabetologia 1999; 42: 373–9

    Article  Google Scholar 

  68. Nauk MA. Glucagon-like peptide 1 (GLP-1): a potent gut peptide with a possible therapeutic perspective. Acta Diabetol 1998; 35: 117–29

    Article  Google Scholar 

  69. Gutzwiller JP, Goke B, Drewe J, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999; 44: 81–6

    Article  PubMed  CAS  Google Scholar 

  70. Sandhu H, Wiesenthal SR, MacDonald PE, et al. Glucagon-like peptide 1 increases insulin sensitivity in depanreatized dogs. Diabetes 1999; 48: 1045–53

    Article  PubMed  CAS  Google Scholar 

  71. Amiel SA. Glugacon-like peptide: a therapeutic glimmer. Lancet 1994; 343: 4–5

    Article  PubMed  CAS  Google Scholar 

  72. Byrne MM, Gliem K, Wank U, et al. Glucagon-like peptide 1 improves the ability of the beta cell to sense and respond to glucose in subjects with impaired glucose tolerance. Diabetes 1998; 47: 1259–65

    Article  PubMed  CAS  Google Scholar 

  73. Todd JF, Wilding JP, Edwards CM, et al. Glucagon-like peptide- 1 (GLP-1): a trial of treatment in non-insulin dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 533–6

    Article  PubMed  CAS  Google Scholar 

  74. Nauck MA, Sauerwald A, Rizel R, et al. Influence of glucagonlike peptide 1 on fasting glycaemia in type 2 diabetic patients treated with insulin after sulfonylurea failure. Diabetes Care 1998; 21: 1925–31

    Article  PubMed  CAS  Google Scholar 

  75. Gutniak MK, Larsson H, Sanders SW, et al. GLP-1 tablet in type 2 diabetes in fasting and postprandial conditions. Diabetes Care 1997; 20: 1974–9

    Article  Google Scholar 

  76. Holst JJ, Deacon C, Toft-Nielsen MB, et al. On the treatment of diabetes mellitus with glucagon-like peptide-1. Ann N Y Acad Sci 1998; 865: 336–43

    Article  PubMed  CAS  Google Scholar 

  77. Seifarth C, Bergmann J, Holst JJ, et al. Prolonged and enhanced secretion of glucagon-like peptide 1 (7–36 amide) after oral sucrose due to alph-glucosidase inhibition (acarbose) in type 2 diabetic patients. Diabet Med 1998; 15: 485–91

    Article  PubMed  CAS  Google Scholar 

  78. Leibowitz MD, Biswas C, Brady EJ, et al. A novel insulin secretagogue is a phosphodiesterase inhibitor. Diabetes 1995; 44: 67–74

    Article  PubMed  CAS  Google Scholar 

  79. Nakaya Y, Minami S, Skamoto Y, et al. Cilostazol, a phoisphodiesterase inhibitor, improves insulin sensitivity in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous NIDDM. Diabetes Obesity Metab 1999; 1: 37–41

    Article  CAS  Google Scholar 

  80. Kawazu S, Suzuki M, Negishi K, et al. Initial phase II clinical studies on midaglizole (DG-5128): a new hypoglycemic agent. Diabetes 1987; 36: 221–6

    Article  PubMed  CAS  Google Scholar 

  81. Ohneda K, Ohneda A, Koizumi F. Mechansim of insulin secretion bymidaglizole. Diabetes Res Clin Pract 1993; 19: 127–32

    Article  PubMed  CAS  Google Scholar 

  82. Moourtada M, Brown CA, Smith SA, et al. Interactions between imidazoline compounds and sulphonylureas in the regulation of insulin secretion. Br J Pharmacol 1997; 121: 799–805

    Article  Google Scholar 

  83. Chan SL. Clonidine-displacing substance and its putative role in control of insulin secretion: aminireview. Gen Pharmacol 1998; 31: 525–9

    Article  PubMed  CAS  Google Scholar 

  84. Rösen P, Ohly P, Gleichmann H. Experiemental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat. J Hypertens 1997; 15 Suppl. 1: S31–8

    Google Scholar 

  85. Tsoli E, Chan SL, Morgan NG. The imidazoline I1 receptor agonist, moxonidine, inhibits insulin secretion from isolated rat islets. Eur J Pharmacol 1995; 284: 199–203

    Article  PubMed  CAS  Google Scholar 

  86. Wang X, Rondu F, Lamouri A, et al. Effect of S-21663 (PMS 812), an imidazoline derivative, on glucose tolerance and insulin secretion in a rat model of type II diabetes. J Pharmacol Exp Ther 1996; 278: 82–9

    PubMed  CAS  Google Scholar 

  87. Le Bigand L, Virsolvy A, Peyrolloer K, et al. Stimulation of insulin release from the MIN6 cell line by a new imidazoline compound, S-21663: evidence for the existence of a novel imidazoline site in beta cells. Br J Pharamcol 1997; 122: 786–91

    Article  Google Scholar 

  88. Le Bihan G, Rondu F, Pele-Tounian A, et al. Design and synthesis of imidazoline derivatives active on glucose homeostasis in a rat model of type 2 diabetes. 2. Syntheses and biological activities of 1,4-dialkyl-,1,4-dibenzyl, and 1-benzyl- 4-alkyl-2(4′,5′-dihydro-1′H-imidazol-2′-yl)piperazines and isosteric analogues of imidazoline. J Med Chem 1999; 42: 1587–603

    Article  PubMed  Google Scholar 

  89. Rachman J, Payne MJ, Levy CJC, et al. Changes in amylin and amylin-like peptide concentrations and beta-cell function in response to sulfonylurea or insulin therapy in NIDDM. Diabetes Care 1998; 21: 810–16

    Article  PubMed  CAS  Google Scholar 

  90. Young A, Denaro M. Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 1998; 14: 524–7

    Article  PubMed  CAS  Google Scholar 

  91. Thompson RG, Pearson L, Schoenfeld SL, et al. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin. The Pramlintide in Types 2 Diabetes Group. Diabetes Care 1998; 21: 897–93

    Article  Google Scholar 

  92. Mooradian AD, Thurman JE. Drug therapy of postprandial hyperglycaemia. Drugs 1999; 57: 19–29

    Article  PubMed  CAS  Google Scholar 

  93. Kennington AS, Hill CR, Craig J, et al. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med 1990; 323: 373–8

    Article  PubMed  CAS  Google Scholar 

  94. Nestler JE, Jakubowicz DJ, Reamer P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med 1999; 340: 1314–20

    Article  PubMed  CAS  Google Scholar 

  95. Iuorno MJ, Nestler JE. The polycystic ovary syndrome: treatment with insulin-sensitising drugs. Diabetes Obesity Metab. In press

  96. Jacob S, Streeper RS, Fogt DL, et al. The antioxidant alphalipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes 1996; 45: 1024–9

    Article  PubMed  CAS  Google Scholar 

  97. Wagh SS, Natraj CV, Menon KKG. Mode of action of lipoic acid in diabetes. J Biosci 1987; 11: 59–74

    Article  CAS  Google Scholar 

  98. Stacpoole PW, Wright EC, Baumgartner TG, et al. Acontrolled clinical trial of dichloroacetate for treatment of lactic acidosis. N Engl J Med 1992; 327: 1564–9

    Article  PubMed  CAS  Google Scholar 

  99. Konrad T, Vinci P, Kusterer K, et al. Alpha-lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care 1999; 22: 280–7

    Article  PubMed  CAS  Google Scholar 

  100. Verma S, Cam MC, McNeill JH. Nutritional factors that can favourably influence the glucose/insulin system: vanadium. J Am Coll Nutr 1998; 17: 11–8

    PubMed  CAS  Google Scholar 

  101. Poucheret P, Verma S, Grynpass MD, et al. Vanadium and diabetes. Mol Cell Biochem 1998; 188: 73–80

    Article  PubMed  CAS  Google Scholar 

  102. Cohen N, Halberstam M, Shlimovich P, et al. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95: 2501–9

    Article  PubMed  CAS  Google Scholar 

  103. Zhang B, Salituro G, Szalkowski D, et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 1999; 284: 974–7

    Article  PubMed  CAS  Google Scholar 

  104. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin dependent diabetes: problems and prospects. Endocr Rev 1998; 19: 477–90

    Article  PubMed  CAS  Google Scholar 

  105. Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obesity Metab 1999; 1: 75–86

    Article  CAS  Google Scholar 

  106. Selam JL. Implantable insulin pumps. Lancet 1999; 354: 178–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Krentz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.J., Krentz, A.J. Recent Developments and Emerging Therapies for Type 2 Diabetes Mellitus. Drugs R&D 2, 75–94 (1999). https://doi.org/10.2165/00126839-199902020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-199902020-00001

Keywords

Navigation