Skip to main content
Log in

Management of Type 2 Diabetes Mellitus

Defining the Role of Nateglinide

  • Drugs in Disease Management
  • Published:
Disease Management & Health Outcomes

Abstract

Type 2 diabetes mellitus is a progressive disease with an insidious onset. It is thought to affect up to 10% of European and North American populations with a significantly higher incidence in non-White than in White populations. Complications of the disease are associated with considerable morbidity and mortality and their management consumes significant healthcare resources.

Data from the United Kingdom Prospective Diabetes Study have shown that intensive glycemic control reduces the microvascular complications of type 2 disease and that intensive management of fasting plasma glucose (FPG) levels is insufficient over time to provide such control. Recent studies have demonstrated that lowering postprandial plasma (PPG) glucose levels provides some additional glycemic control and recent epidemiologic data suggest reducing PPG levels may be associated with a reduction in mortality.

In patients with type 2 diabetes mellitus inadequately controlled by diet and exercise, nateglinide significantly improved glycemic control compared with placebo; a beneficial effect on both FPG and PPG levels was observed. In active comparator studies, nateglinide has been shown to be as effective as metformin (in pharmacotherapy-naïve patients), acarbose and troglitazone in reducing glycosylated hemoglobin (HbA1c) levels.

When used in combination with metformin (in patients inadequately controlled on maximum dosages of metformin monotherapy) nateglinide significantly improves glycemic control compared with placebo. In addition, nateglinide has been shown to display pronounced additive effects when added to troglitazone or metformin in patients inadequately controlled by diet and exercise alone.

Nateglinide was generally well tolerated in clinical trials. The most common adverse event was hypoglycemia, although the incidence was low in comparison with sulfonylureas. The incidence of hypoglycemia was increased in patients using nateglinide in combination with metformin.

By controlling HbA1c and PPG, nateglinide has the potential to provide substantial health and quality-of-life benefits; however, long-term outcome data and validated quality-of-life assessments are lacking. In economic modelling studies, the estimated cost-effectiveness ratios observed with nateglinide were well within the range for therapies considered to be cost-effective.

In conclusion, nateglinide is a useful addition to the available treatments for type 2 diabetes mellitus. It significantly improved glycemic control in pharmacotherapy-naïve patients as well as in patients not adequately controlled by metformin alone; however, until long-term clinical data become available, nateglinide can only be considered as an adjunct to metformin in patients inadequately controlled on metformin alone in whom PPG levels are elevated. Nateglinide is well tolerated and has low potential to cause hypoglycemia and bodyweight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III
Fig. 2
Table IV

Similar content being viewed by others

References

  1. The DECODE Study Group on behalf of the European Diabetes Epidemiology Group. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 1999 Aug 21; 354(9179): 617–21.

    Article  Google Scholar 

  2. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998 Aug; 19(4): 477–90.

    Article  PubMed  CAS  Google Scholar 

  3. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2002 Jan; 25(90001): S33–49.

    Article  Google Scholar 

  4. Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, et al. Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 2001 Sep; 27(4): 415–23.

    PubMed  CAS  Google Scholar 

  5. Zimmet P, Dowse G, Bennett P. Hyperinsulinaemia is a predictor of non-insulindependent diabetes mellitus. Diabete Metab 1991 May; 17(1 Pt 2): 101–8.

    PubMed  CAS  Google Scholar 

  6. Brown DL, Brillon D. New directions in type 2 diabetes mellitus: an update of current oral antidiabetic therapy. J Natl Med Assoc 1999 Jul; 91(7): 389–95.

    PubMed  CAS  Google Scholar 

  7. Perfetti R, Mathur R, Egan J. New insulin secretagogues for the treatment of type 2 diabetes. Dis Manage Clin Outcomes 1998; 1(4): 129–35.

    Article  Google Scholar 

  8. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999 Aug 17; 131(4): 281–303.

    Google Scholar 

  9. Landgraf R. Approaches to the management of postprandial hyperglycaemia. Exp Clin Endocrinol Diabetes 1999; 107 Suppl. 4: S128–32.

    Article  PubMed  CAS  Google Scholar 

  10. Gerich JE. Matching treatment to pathophysiology in type 2 diabetes. Clin Ther 2001 May; 23(5): 646–59.

    Article  PubMed  CAS  Google Scholar 

  11. Gerich JE. Is insulin resistance the principal cause of type 2 diabetes? Diabetes Obes Metab 1999 Sep; 1(5): 257–63.

    Article  PubMed  CAS  Google Scholar 

  12. Arner P, Pollare T, Lithell H. Different aetiologies of type 2 (non-insulin-dependent) diabetes mellitus in obese and non-obese subjects. Diabetologia 1991 Jul; 34(7): 483–7.

    Article  PubMed  CAS  Google Scholar 

  13. Groop LC, Bonadonna RC, DelPrato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus: Evidence for multiple sites of insulin resistance. J Clin Invest 1989 Jul; 84(1): 205–13.

    Article  PubMed  CAS  Google Scholar 

  14. Polonsky KS. Lilly lecture 1994: The beta-cell in diabetes: from molecular genetics to clinical research. Diabetes 1995 Jun; 44(6): 705–17.

    Article  PubMed  CAS  Google Scholar 

  15. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988 Jun; 37(6): 667–87.

    PubMed  CAS  Google Scholar 

  16. Saad MF, Knowler WC, Pettitt DJ, et al. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet 1989 Jun 17; 1(8651): 1356–9.

    Article  PubMed  CAS  Google Scholar 

  17. Marks L. Counting the cost: The real impact of non insulin dependent diabetes [online]. Available from URL: http://www.diabetes.org.uk/infocentre/carerec/counting.doc [Accessed 2002 May 15].

  18. Everhard F, Grüger J. Starlix health economics dossier. Global Health Economics, 2000. (Data on file).

  19. Harris MI. Undiagnosed NIDDM: clinical and public health issues. Diabetes Care 1993 Apr; 16(4): 642–52.

    PubMed  CAS  Google Scholar 

  20. McCarty D, Zimmet P. Diabetes 1994 to 2010: Global estimates and projections. Geneva: WHO Collaborating Centre for Diabetes, 1994.

    Google Scholar 

  21. Carter JS, Pugh JA, Monterrosa A. Non-insulin-dependent diabetes mellitus in minorities in the United States. Ann Intern Med 1996 Aug 1; 125(3): 221–32.

    PubMed  CAS  Google Scholar 

  22. Agrawal L, Emanuele NV, Abraira C, et al. Ethnic differences in the glycemic response to exogenous insulin treatment in the Veterans Affairs Cooperative Study in Type 2 Diabetes Mellitus (VA CSDM). Diabetes Care 1998 Apr; 21(4): 510–5.

    Article  PubMed  CAS  Google Scholar 

  23. Fujimoto WY. Overview of non-insulin-dependent diabetes mellitus (NIDDM) in different population groups. Diabet Med 1996 Sep; 13 Suppl. 6(9): S7–10.

    Google Scholar 

  24. Graal MB, Wolffenbuttel BHR. The use of sulphonylureas in the elderly. Drugs Aging 1999 Dec; 15(6): 471–81.

    Article  PubMed  CAS  Google Scholar 

  25. Harris MI, Hadden WC, Knowler WC, et al. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74 yr. Diabetes 1987 Apr; 36(4): 523–34.

    Article  PubMed  CAS  Google Scholar 

  26. Harvey JN, Craney L, Kelly D. Estimation of the prevalence of diagnosed diabetes from primary care and secondary care source data: comparison of record linkage with capture-recapture analysis. J Epidemiol Community Health 2002 Jan; 56(1): 18–23.

    Article  PubMed  CAS  Google Scholar 

  27. U.K. Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998 Sep 12; 352(9131): 854–65.

    Article  Google Scholar 

  28. Stern MP, Rosenthal M, Haffner SM, et al. Sex difference in the effects of sociocultural status on diabetes and cardiovascular risk factors in Mexican Americans. The San Antonio Heart Study. Am J Epidemiol 1984 Dec; 120(6): 834–51.

    PubMed  CAS  Google Scholar 

  29. Gumbiner B, Polonsky KS, Beltz WF, et al. Effects of aging on insulin secretion. Diabetes 1989 Dec; 38(12): 1549–56.

    Article  PubMed  CAS  Google Scholar 

  30. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998 Sep 12; 352(9131): 837–53.

    Article  Google Scholar 

  31. Bergstrom RW, Newell-Morris LL, Leonetti DL, et al. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men. Diabetes 1990 Jan; 39(1): 104–11.

    Article  PubMed  CAS  Google Scholar 

  32. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991 Feb 16; 337(8738): 382–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ferrannini E, Camastra S. Relationship between impaired glucose tolerance, noninsulin-dependent diabetes mellitus and obesity. Eur J Clin Invest 1998 Sep; 28 Suppl. 2: 3–7.

    Article  PubMed  Google Scholar 

  34. McCance DR, Pettitt DJ, Hanson RL, et al. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994 Apr 9; 308(6934): 942–5.

    Article  PubMed  CAS  Google Scholar 

  35. Mooy JM, de Vries H, Grootenhuis PA, et al. Major stressful life events in relation to prevalence of undetected type 2 diabetes: the Hoorn Study. Diabetes Care 2000 Feb; 23(2): 197–201.

    Article  PubMed  CAS  Google Scholar 

  36. Turner R, Cull C, Holman R. United Kingdom Prospective Diabetes Study 17: a 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann Intern Med 1996 Jan 1; 124(1 Pt 2): 136–45.

    PubMed  CAS  Google Scholar 

  37. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000 Aug 12; 321(7258): 405–12.

    Article  PubMed  CAS  Google Scholar 

  38. Adler AI, Stratton IM, Neil HAW, et al. Association of systolic blood pressure with macro vascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000 Aug 12; 321(7258): 412–9.

    Article  PubMed  CAS  Google Scholar 

  39. The Diabetes Control and Complications Trial Research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993 Sep 30; 329(14): 977–86.

    Article  Google Scholar 

  40. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995 May; 28(2): 103–17.

    Article  PubMed  CAS  Google Scholar 

  41. Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998 Mar 14; 316(7134): 823–8.

    Article  PubMed  CAS  Google Scholar 

  42. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995 Feb; 18(2): 258–68.

    Article  PubMed  CAS  Google Scholar 

  43. Huse DM, Oster G, Killen AR, et al. The economic costs of non-insulin-dependent diabetes mellitus. JAMA 1989 Nov 17; 262(19): 2708–13.

    Article  PubMed  CAS  Google Scholar 

  44. Grueger J, O’Brien JA, Caro JJ, et al. The lifetime direct medical costs of managing diabetes and its complications in France. Value Health 2001; 4: 504–5.

    Article  Google Scholar 

  45. Caro JJ, Ward AJ, O’Brien JA. Lifetime costs of complications resulting from type 2 diabetes in the US. Diabetes Care 2002 Mar; 25(3): 476–81.

    Article  PubMed  Google Scholar 

  46. Westaway MS, Rheeder P, Gumede T. The effect of type 2 diabetes mellitus on health-related quality of life (HRQOL). Curationis 2001 Mar; 24(1): 74–8.

    Article  PubMed  CAS  Google Scholar 

  47. U.K. Prospective Diabetes Study Group. Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control (UKPDS 37). Diabetes Care 1999 Jul; 22(7): 1125–36.

    Article  Google Scholar 

  48. Lloyd A, Sawyer W, Hopkinson P. Impact of long-term complications on quality of life in patients with type 2 diabetes not using insulin. Value Health 2001 Sep; 4(5): 392–400.

    Article  PubMed  CAS  Google Scholar 

  49. Wandell PE, Tovi J. The quality of life of elderly diabetic patients. J Diabetes Complications 2000; 14(1): 25–30.

    Article  PubMed  CAS  Google Scholar 

  50. Weinberger M, Kirkman MS, Samsa GP, et al. The relationship between glycemic control and health-related quality of life in patients with non-insulin-dependent diabetes mellitus. Med Care 1994 Dec; 32(12): 1173–81.

    Article  PubMed  CAS  Google Scholar 

  51. Van der Does FE, De Neeling JND, Snoek FJ, et al. Symptoms and well-being in relation to glycemic control in type II diabetes. Diabetes Care 1996 Mar; 19(3): 204–10.

    Article  PubMed  Google Scholar 

  52. Diabetes disease management improves care and may reduce long-term costs. Drug Ther Perspect 1999 Oct 25; 14(9): 7–10.

    Article  Google Scholar 

  53. Jarvis B, Spencer CM. Management of hypertension in patients with diabetes mellitus:defining the role of lisinopril. Dis Manage Health Outcomes 2000; 7(5): 267–88.

    Article  Google Scholar 

  54. Wilson SH, Kennedy FP, Garratt KN. Optimisation of the management of patients with coronary heart disease and type 2 diabetes mellitus. Drugs Aging 2001; 18(5): 325–33.

    Article  PubMed  CAS  Google Scholar 

  55. Wierzbicki AS, Mikhailidis DP, Wray R. Drug treatment of combined hyperlipidemia. Am J Cardiovasc Drugs 2001; 1(5): 327–36.

    Article  PubMed  CAS  Google Scholar 

  56. Hay JW, Yu WM, Ashraf T. Pharmacoeconomics of lipid-lowering agents for primary and secondary prevention of coronary artery disease. Pharmacoeconomics 1999 Jan; 15(1): 47–74.

    Article  PubMed  CAS  Google Scholar 

  57. Royal College of General Practitioners Effective Clinical Practice Unit. Clinical guidelines for type 2 diabetes; blood glucose management [online]. Available from URL: http://www.shef.ac.uk/guidelines [Accessed 2002 Mar 9].

  58. British national formulary. 42 ed. London: The Pharmaceutical Press, 2001.

  59. Novartis Pharmaceuticals Corporation. Starlix prescribing information. New Jersey, US: Novartis Pharmaceuticals Corporation, 2000 Dec.

  60. Gleeson JM, Foris M, Cypress M, et al. Diabetes Mellitus: disease management in a multispecialty group practice. Dis Manage Health Outcomes 1999 Feb; 5(2): 61–72.

    Article  Google Scholar 

  61. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001 May 3; 344(18): 1343–50.

    Article  PubMed  CAS  Google Scholar 

  62. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002 Feb 7; 346(6): 393–403.

    Article  PubMed  CAS  Google Scholar 

  63. Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss, and diet composition on plasma lipids and glucose in patients with type 2 diabetes. Diabetes Care 1999 Jun; 22(6): 889–95.

    Article  PubMed  CAS  Google Scholar 

  64. Gumbiner B. Treating obesity in type 2 diabetes. Calories, composition, and control. Diabetes Care 1999 Jun; 22(6): 886–8.

    Article  PubMed  CAS  Google Scholar 

  65. British Diabetic Association. Diabetes in the United Kingdom [online]. Available from URL: http://www.diabetes.org.uk/info/carerec/intheuk.doc [Accessed 2002 May 15].

  66. Uchimoto S, Tsumura K, Hayashi T, et al. Impact of cigarette smoking on the incidence of type 2 diabetes mellitus in middle-aged Japanese men: the Osaka Health Survey. Diabet Med 1999 Nov; 16(11): 951–5.

    Article  PubMed  CAS  Google Scholar 

  67. Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care 1999 Nov; 22(11): 1887–98.

    Article  PubMed  CAS  Google Scholar 

  68. Management of type 2 diabetes: finding a sensible pathway through the maze of available agents. Drug Ther Perspect 2001 Jul 16; 17(14): 4–8.

    Article  Google Scholar 

  69. Implications of the United Kingdom prospective diabetes study. Diabetes Care 2002 Jan; 25(90001): S28–32.

    Article  Google Scholar 

  70. Matthews DR, Cull CA, Stratton IM, et al. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 1998 Apr; 15(4): 297–303.

    Article  PubMed  CAS  Google Scholar 

  71. Coniff RF, Shapiro JA, Seaton TB. Long-term efficacy and safety of acarbose in the treatment of obese subjects with non-insulin-dependent diabetes mellitus. Arch Intern Med 1994 Nov 14; 154(21): 2442–8.

    Article  PubMed  CAS  Google Scholar 

  72. Coniff RF, Shapiro JA, Seaton TB, et al. Multicenter, placebo-controlled trial comparing acarbose (BAY g5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin- dependent diabetes mellitus. Am J Med 1995 May; 98(5): 443–51.

    Article  PubMed  CAS  Google Scholar 

  73. Chiasson JL, Josse RG, Hunt JA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus: a multicenter controlled clinical trial. Ann Intern Med 1994 Dec 15; 121(12): 928–35.

    PubMed  CAS  Google Scholar 

  74. White Jr JR, Campbell RK. The management of type 2 diabetes mellitus in the elderly patient. J Geriatr Drug Ther 1999; 12: 21–45.

    Article  Google Scholar 

  75. National Institiute for Clinical Excellence. Pioglitazone for type 2 diabetes mellitus [online]. Available from URL: http://www.nice.org.uk [Accessed 2002 Mar 10].

  76. Barman Balfour JA, Plosker GL. Rosiglitazone. Drugs 1999 Jun; 57(6): 921–30.

    Article  Google Scholar 

  77. FDA strengthens labelling for cardiovascular risks of glitazones [online]. Available from URL: http://www.fda.gov [Accessed 2002 May 7].

  78. Marre M, Van Gaal L, Usadel K-H, et al. Nateglinide improves glycaemic control when added to metformin monotherapy: results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab. In press.

  79. Schrand LM, Spanheimer RG. Nateglinide: a new member of the meglitinide family for postprandial glucose control in type 2 diabetes. Formulary 2000 Oct; 35(10): 798–811.

    CAS  Google Scholar 

  80. Mallarkey G. Opinion and evidence: disease management. Auckland, New Zealand: ADIS, 2000.

    Google Scholar 

  81. American Diabetes Association: clinical practice recommendations 1997. Diabetes Care 1997 Jan; 20 Suppl. 1: S1–70.

  82. Suh DC, Colaizzi JL. Diabetes mellitus disease management program: outcomes and cost-effectiveness of diabetes treatment. Dis Manage Clin Outcomes 1997 Mar; 1(2): 47–53.

    Article  Google Scholar 

  83. Ibrahim IA, Beich J, Sidorov J, et al. Measuring outcomes of type 2 diabetes disease management program in an HMO setting. South Med J 2002 Jan; 95(1): 78–87.

    PubMed  Google Scholar 

  84. Hollander PA, Schwartz SL, Gatlin MR, et al. Importance of early insulin secretion: comparison of nateglinide and glyburide in previously diet-treated patients with type 2 diabetes. Diabetes Care 2001 Jun; 24(6): 983–8.

    Article  PubMed  CAS  Google Scholar 

  85. Kalbag JB, Walter YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001 Jan; 24(1): 73–7.

    Article  PubMed  CAS  Google Scholar 

  86. Novartis Europharm Limited. Starlix: Summary of product characteristics. Available from URL: http://www.eudra/org/humandocs/humans/epar/starlix/starlix.htm [Accessed 2002 May 5].

  87. Keilson L, Mather S, Walter YH, et al. Synergistic effects of nateglinide and meal administration on insulin secretion in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000 Mar; 85(3): 1081–6.

    Article  PubMed  CAS  Google Scholar 

  88. Ishii T, Yamakita T, Yamagami K, et al. Nateglinide is safe and efficacious in lowering postprandial blood glucose in type 2 diabetic patients with various degree of renal function. Diabetes 2001; 50 Suppl. 2: A118.

    Google Scholar 

  89. European Medicines Evaluation Agency. Scientific discussion: STARLIX (Nateglinide) [online]. Available from URL: http://www.eudra.org/humandocs/humans/epar/starlix/starlix.htm [Accessed 2002 Apr 6].

  90. Horton ES, Clinkingbeard C, Gatlin M, et al. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care 2000; 23(11): 1660–5.

    Article  PubMed  CAS  Google Scholar 

  91. Hanefeld M, Bouter KP, Dickinson S, et al. Rapid and short-acting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care 2000 Feb; 23(2): 202–7.

    Article  PubMed  CAS  Google Scholar 

  92. Rosenstock J, Gatlin M, Mallows S, et al. Nateglinide improves glycemic control alone and in combination with troglitazone in type 2 diabetes. Diabetes Res Clin Pract 2000 Sep; 50 Suppl. 1: 333.

    Google Scholar 

  93. Holmes D, Raccah D, Escobar-Jimenez F. Targeting postprandial hyperglycaemia in patients with type 2 diabetes: nateglinide vs acarbose [plus poster]. Diabetologia 2001; 44 Suppl. 1: 215.

    Google Scholar 

  94. Ligueros-Saylan M, Khalilieh S, Lee J, et al. Nateglinide has a low hypoglycemic potential in a missed-meal situation [plus poster]. Diabetes 2000; 49 Suppl. 1: A360.

    Google Scholar 

  95. Walter YH, Brookman L, Peiming MA, et al. Reduced risk of delayed hypoglycemia with nateglinide compared to repaglinide [plus poster] [abstract no. 521-P]. Diabetes 2000; 49 Suppl. 1: A128.

    Google Scholar 

  96. Novartis Pharmaceuticals. Starlix: Clinical trials [online]. Available from URL: http://www.starlix.com/starlix/content/pages/clinical_trials.htm [Accessed 2002 Apr 18].

  97. Gill GV, Huddle KR. Hypoglycaemic admissions among diabetic patients in Soweto, South Africa. Diabet Med 1993; 10: 181–3.

    Article  PubMed  CAS  Google Scholar 

  98. Frandsen KB, Kristensen JS. Compliance with, and understanding of, mealtime advice in patients with type 2 diabetes [abstract no. 728-P]. Diabetes 2000; 49 Suppl. 1:A176.

    Google Scholar 

  99. Landgraf R, Frank M, Bauer C, et al. Prandial glucose regulation with repaglinide: its clinical and lifestyle impact in a large cohort of patients with type 2 diabetes. Int J Obes 2000; 24 Suppl. 3: S38–44.

    Article  Google Scholar 

  100. LLoyd A, Hopkinson PK. The impact of diabetic complications on the quality of life of patients with type 2 diabetes [abstractno. 135]. Diabetologia 1999 Aug; 42 Suppl. 1:37.

    Google Scholar 

  101. Caro JJ, Salas M, Ward AJ, et al. Combination therapy for type 2 diabetes: what are the potential health and cost implications in Canada. Novartis Pharmaceuticals Canada, Inc., 2002 (Data on file).

  102. van Os N, Niessen LW, Bilo HJG, et al. Diabetes nephropathy in the Netherlands: a cost effectiveness analysis of national clinical guidelines. Health Policy 2000 Apr; 51(3): 135–47.

    Article  PubMed  Google Scholar 

  103. Brun-Strang C, Caro J, Armenians L, et al. Modeling the impact of a new oral anti-diabetic treatment on diabetes complication costs in France [abstract]. Value Health 2001 Nov; 4(6): 504.

    Article  Google Scholar 

  104. Caro JJ, Klittich WS, Raggio G, et al. Economic assessment of troglitazone as an adjunct to sulfonylurea therapy in the treatment of type 2 diabetes. Clin Ther 2000 Jan; 22(1): 116–27.

    Article  PubMed  CAS  Google Scholar 

  105. Graham JD, Corso PS, Morris JM, et al. Evaluating the cost-effectiveness of clinical and public health measures. Ann Rev Public Health 1998; 19: 125–52.

    Article  CAS  Google Scholar 

  106. van den Boom G, Koopmanschap MA, Caro J, et al. Clinical benefits and cost-offsets of combination therapy with nateglinide plus metformin versus metformin alone in diabetes in the Netherlands [abstract no. PDG12]. Value Health 2001;4(6):506–7.

    Google Scholar 

  107. Caro JJ, Salas M, O’Brien J, et al. Efficiency of reaching dual glycemic control in patients with type 2 diabetes in the US, 2002. (Data on file).

  108. Culy CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 2001; 61(11): 1625–60.

    Article  PubMed  CAS  Google Scholar 

  109. Erlinger TP, Brancati FL. Postchallenge hyperglycemia in a national sample of U.S. adults with type 2 diabetes. Diabetes Care 2001 Oct; 24(10): 1734–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher I. Carswell.

Additional information

Various sections of the manuscript reviewed by: J. Gleeson, Lovelace Health Systems, Albuquerque, New Mexico, USA; V. Grill, Department of Internal Medicine, University Hospital of Trondheim, Trondheim, Norway; C. Heller, Athena Healthcare Communications Inv, Chicago, Illinois, USA; D. Huse, Policy Analysis Inc, Brookline, Massachusetts, USA; D.W. Plocher, Minneapolis Health Care Consulting, Ernst & Young LLP, Minneapolis, Michigan, USA; D.C. Suh, College of Pharmacy, Rutgers -The State University of New Jersey, Piscataway, New Jersey, USA; J.R. White, Department of Pharmacotherapy, Washington State University, Spokane, Washington, USA.

Data Selection

Sources: Medical literature published in any language since 1980 on nateglinide, identified using Medline, supplemented by AdisBase (a proprietary database of Adis International). Additional references were identified from the reference lists of published articles. Bibliographical information, including contributory unpublished data, was also requested from the company developing the drug.

Search strategy: Medline search terms were ‘diabetes mellitus type 2 ’ or ‘diabetes mellitus non-insulin-dependent’ and (‘guidelines’ or ‘decision-making’ or ‘health-policy’ or ‘managed-care-programs’ or ‘epidemiology’ or ‘outcome-assessment-health-care’ or ‘clinical-protocols’ or ‘guideline in pt’ or ‘polic* in ti’ or ‘expert panel’ or ‘utilization review’ or ‘algorithms’ or ‘disease management’ or ‘quality of life’), or ‘nateglinide’ and ‘review in pt’. AdisBase search terms were ‘type-2-diabetes-mellitus’ and (‘guideline’ or ‘guideline-utilization’ or ‘practice-guideline’ or ‘disease-management-programs’ or ‘treatment-algorithms’ or ‘reviews-on-treatment’ or ‘drug-evaluations’ or ‘epidemiology’ or ‘cost-of-illness’ or ‘pathogenesis’), or ‘nateglinide’ and (‘review’ or ‘clinical-study’). Searches were last updated 14th April 2001.

Selection: Studies in patients with type 2 diabetes mellitus who received nateglinide. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic, pharmacokinetic, pharmacoeconomic and epidemiological data are also included.

Index terms: Nateglinide, diabetes mellitus, disease management, review on treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carswell, C.I., Culy, C.R. & Perry, C.M. Management of Type 2 Diabetes Mellitus. Dis-Manage-Health-Outcomes 10, 363–383 (2002). https://doi.org/10.2165/00115677-200210060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200210060-00006

Keywords

Navigation