Skip to main content
Log in

Management of Hypertension in Patients with Diabetes Mellitus

Defining the Role of Lisinopril

  • Drugs in Disease Management
  • Published:
Disease Management and Health Outcomes

Abstract

Hypertension and diabetes mellitus are significant and independent risk factors for cardiovascular disease.

Antihypertensive therapy reduces cerebrovascular and cardiovascular morbidity and mortality in patients with hypertension. Tight blood pressure (BP) control [target diastolic BP (DBP) ≤80mm Hg] reduced the incidence of major cardiovascular events by 51% compared with less tight control (DBP ≤90mm Hg) in patients with diabetes mellitus in the Hypertension Optimal Treatment (HOT) study. Similarly, in the UK Prospective Diabetes Study (UKPDS), tight BP control [mean systolic BP (SBP)/DBP = 144/82mm Hg] with captopril or atenolol reduced diabetes mellitus-related morbidity and mortality by 24% compared with less tight control (mean SBP/DBP = 154/87mm Hg). Importantly, the frequency of microvascular disease (including retinopathy) was reduced by 37% among those randomised to tight BP control in the UKPDS.

In the diabetic subgroup in the Heart Outcomes Prevention Evaluation (HOPE) study, there was a 25% reduction in the composite end-point of death due to cardiovascular causes, or myocardial infarction or stroke during 5 years of treatment with ramipril 10 mg/day relative to placebo.

Lisinopril is an ACE inhibitor indicated for use in hypertension, heart failure and post-myocardial infarction. As an antihypertensive agent the drug is effective and generally well tolerated in patients with type 1 or 2 diabetes mellitus and in those with early or overt nephropathy.

In the Swedish Treatment of Old People (STOP) Hypertension 2 trial, there was no difference in the relative risk of cardiovascular death between those assigned to ACE inhibitors (lisinopril or enalapril), calcium channel blockers (felodipine or isradipine) or ‘conventional’ antihypertensive therapy (thiazide diuretics or β blockers); treatment effects did not differ significantly between diabetic and nondiabetic patients (10.9% of the 6614 patients had diabetes mellitus). Importantly, lower frequencies of nonfatal or fatal myocardial infarction [relative risk (RR) 0.77; 95% confidence interval (CI) 0.61 to 0.96] and congestive heart failure (RR 0.78; CI 0.83 to 0.97) were detected during 4 years’ treatment with lisinopril or enalapril than felodipine or isradipine in this study.

Lisinopril reduced albumin excretion rates in patients with type 1 or 2 diabetes mellitus. In the 2-year EURODIAB Controlled Trial of Lisinopril in IDDM (EUCLID) study, albumin excretion rates decreased by 49.7% relative to placebo in normotensive patients with type 1 diabetes mellitus and microalbuminuria during treatment with lisinopril 10 to 20 mg/day. Progression of retinopathy was attenuated in normotensive patients with type 1 diabetes mellitus during treatment with lisinopril in this study.

In conclusion, lisinopril, like other ACE inhibitors should be considered a first-line agent for reducing BP and attenuating nephropathy in patients with type 1 or 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Fig. 2
Table VI
Table VII

Similar content being viewed by others

Notes

  1. The doxazosin arm of the study was stopped in February 2000 after an independent data review by an advisory committee determined that recipients of doxazosin had 25% more cardiovascular events and were twice as likely to be hospitalised for congestive heart failure as were chlorthalidone recipients. Importantly, there was no difference in the risk of myocardial infarction or all-cause mortality between the 2 groups. The remaining arms of the study are continuing as scheduled.[191,192]

References

  1. AstraZeneca. Zestril prescribing information [on line]. [Accessed 2000, Mar 10]. AstraZeneca Ltd. Available from: URL: http://www.zestrilinfo.com/info/info.htm

  2. Lancaster SG, Todd PA. Lisinopril: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs 1988 Jun; 35: 646–69

    PubMed  CAS  Google Scholar 

  3. Goa KL, Balfour JA, Zuanetti G. Lisinopril: a review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs 1996 Oct; 52: 564–88

    PubMed  CAS  Google Scholar 

  4. Langtry HD, Markham A. Lisinopril: a review of its pharmacology and clinical efficacy in elderly patients. Drugs Aging 1997 Feb; 10: 131–66

    PubMed  CAS  Google Scholar 

  5. Goa KL, Haria M, Wilde MI. Lisinopril: a review of its pharmacology and use in the management of complications of diabetes mellitus. Drugs 1997 Jun; 53: 1081–105

    PubMed  CAS  Google Scholar 

  6. Simpson K, Jarvis B. Lisinopril: a review of its use in congestive heart failure. Drugs. In press

  7. Matthews DR, Cull CA, Stratton IM, et al. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabetic Med 1998; 15: 297–303

    PubMed  CAS  Google Scholar 

  8. The National High Blood Pressure Education Program Working Group. National High Blood Pressure Education Program Working Group Report on Hypertension in Diabetes. Hypertension 1994; 23: 145–58

    Google Scholar 

  9. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2000 Jan; 23 Suppl. 1: S4–19

    Google Scholar 

  10. Alberti KGMM, Zimmet PZ, for the WHO consultation. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med 1998; 15:539–53

    PubMed  CAS  Google Scholar 

  11. The DECODE-study group on behalf of the European Diabetes Epidemiology Group. Is fasting plasma glucose sufficient to define diabetes? Epidemiological data from 20 European studies. Diabetologia 1999; 42: 647–54

    Google Scholar 

  12. DECODE Study Group on behalf of the European Diabetes Epidemiology Study Group. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. BMJ 1998 Aug 8; 317: 371–5

    Google Scholar 

  13. Resnick HE, Harris MI, Brock DB, et al. American Diabetes Association diabetes diagnostic criteria, advancing age, and cardiovascular disease risk profiles: results from the Third National Health and Nutrition Examination Survey. Diabetes Care 2000 Feb; 23_(2): 176–80

    Google Scholar 

  14. Wareham NJ, O’Rahilly S. The changing classification and diagnosis of diabetes: new classification is based on pathogenesis, not insulin dependence. BMJ 1998 Aug 8; 317: 359–60

    PubMed  CAS  Google Scholar 

  15. The Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with Type 1 diabetes mellitus: a seven-year prospective study. Diabetic Med 1999; 16: 918–25

    Google Scholar 

  16. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 1999 Sep 7; 100: 1134–46

    PubMed  CAS  Google Scholar 

  17. Hayashi T, Tsumura K, Suematsu C, et al. High normal blood pressure, hypertension, and the risk of type 2 diabetes in Japanese men: The Osaka Health Survey. Diabetes Care 1999 Oct; 22: 1683–7

    PubMed  CAS  Google Scholar 

  18. Epstein M. Diabetes and hypertension: the bad companions. J Hypertens 1997; 15 Suppl. 2: S55–62

    CAS  Google Scholar 

  19. Tanaka Y, Onuma T, Atsumi Y, et al. Role of glycemic control and blood pressure in the development and progression of nephropathy in elderly Japanese NIDDM patients. Diabetes Care 1998 Jan; 21(1): 116–20

    PubMed  CAS  Google Scholar 

  20. Bilo HJG, Gans ROB. Hypertensive patients and diabetes: a high-risk population. J Cardiovasc Pharmacol 1998; 32 Suppl. 2: S1–8

    PubMed  CAS  Google Scholar 

  21. Jarrett RJ. Type 2 (non-insulin-dependent) diabetes mellitus and coronary heart disease — chicken, egg, or neither? Diabetologia 1984 Feb; 26(2): 99–102

    PubMed  CAS  Google Scholar 

  22. Stern MP. Diabetes and cardiovascular disease: the “common soil” hypothesis. Diabetes 1995 Apr; 44: 369–74

    PubMed  CAS  Google Scholar 

  23. Hsueh WA, Law R. Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am J Med 1998; 105 Suppl. 1A: 4S–14S

    PubMed  CAS  Google Scholar 

  24. Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105 Suppl. 1A: 77S–82S

    PubMed  CAS  Google Scholar 

  25. Nathan DM, Meigs J, Singer DE. The epidemiology of cardiovascular disease in type 2 diabetes mellitus: how sweet it is or is it? Lancet 1997 July; 350 Suppl. 1: S14–9

    Google Scholar 

  26. Sowers JR, Lester MA. Diabetes and cardiovascular disease. Diabetes Care 1999 Apr; 22 Suppl. 3: C14–20

    PubMed  Google Scholar 

  27. Syvänne M, Taskinen M-R. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997 July; 350 Suppl. 1: SI20–3

    PubMed  Google Scholar 

  28. Meigs JB, Mittleman MA, Nathan DM, et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA 2000 Jan 12; 283(2): 221–8

    PubMed  CAS  Google Scholar 

  29. Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet 1997 Jul; 350 Suppl. 1: S19–113

    Google Scholar 

  30. Tooke JE, Goh KL. Vascular function in Type 2 diabetes mellitus and pre-diabetes: the case for intrinsic endotheliopathy. Diabetic Med 1999 Sep; 16: 710–5

    PubMed  CAS  Google Scholar 

  31. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities — the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996 Feb 8; 334(6): 374–81

    PubMed  CAS  Google Scholar 

  32. The Hypertension in Diabetes Study Group. Hypertension in diabetes study (HDS): II. increased risk of cardiovascular complications in hypertensive type 2 diabetic patients. J Hypertens 1993; 11:319–25

    Google Scholar 

  33. Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000 Jan 25; 101: 329–35

    PubMed  CAS  Google Scholar 

  34. Ritz E, Rychlik I, Locatelli F, et al. End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999 Nov; 34(5): 795–808

    PubMed  CAS  Google Scholar 

  35. Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Am J Kidney Dis 1996 Feb; 27(2): 167–94

    PubMed  CAS  Google Scholar 

  36. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999 Dec 23-30; 402(6764): 880–3

    PubMed  CAS  Google Scholar 

  37. Kennon B, Petrie JR, Small M, et al. Angiotensin-converting enzyme gene and diabetes mellitus. Diabetic Med 1999; 16: 448–58

    PubMed  CAS  Google Scholar 

  38. Gambaro G, Anglani F, D’Angelo A. Association studies of genetic polymorphisms and complex disease. Lancet 2000 Jan 22; 355(9200): 308–11

    PubMed  CAS  Google Scholar 

  39. Marre M, Bernadet P, Gallois Y, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994 Mar; 43(3): 384–8

    PubMed  CAS  Google Scholar 

  40. Bengtsson K, Orho-Melander M, Lindblad U, et al. Polymorphism in the angiotensin converting enzyme but not in the angiotensinogen gene is associated with hypertension and type 2 diabetes: the Skaraborg Hypertension and diabetes project. J Hypertens 1999 Nov; 17(11): 1569–75

    PubMed  CAS  Google Scholar 

  41. Estacio RO, Jeffers BW, Havranek EP, et al. Deletion polymorphism of the angiotensin converting enzyme gene is associated with an increase in left ventricular mass in men with type 2 diabetes mellitus. Am J Hypertens 1999; 12(6): 637–42

    PubMed  CAS  Google Scholar 

  42. Oue T, Namba M, Nakajima H, et al. Risk factors for the progression of microalbuminuria in Japanese type 2 diabetic patients —a 10 year follow-up study. Diabetes Res Clin Pract 1999 Oct; 46(1): 47–55

    PubMed  CAS  Google Scholar 

  43. Yoshida H, Kuriyama S, Atsumi Y, et al. Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int 1996; 50: 657–64

    PubMed  CAS  Google Scholar 

  44. Powrie JK, Watts GF, Ingham JN, et al. Role of glycaemic control in development of microalbuminuria in patients with insulin dependent diabetes. BMJ 1994 Dec 17; 309: 1608–12

    PubMed  CAS  Google Scholar 

  45. Fujisawa T, Ikegami H, Shen G-Q, et al. Angiotensin I-converting enzyme gene polymorphism is associated with myocardial infarction, but not with retinopathy or nephropathy, in NIDDM. Diabetes Care 1995 Jul; 18(7): 983–5

    PubMed  CAS  Google Scholar 

  46. Schmidt S, Schöne N, Ritz E, et al. Association of ACE gene polymorphism and diabetic nephropathy. Kidney Int 1995; 47: 1176–81

    PubMed  CAS  Google Scholar 

  47. Nakajima S, Baba T, Yajima Y, et al. Is ACE gene polymorphism a useful marker for diabetic albuminuria in Japanese NIDDM patients? Diabetes Care 1996 Dec; 19(12): 1420–2

    PubMed  CAS  Google Scholar 

  48. Tarnow L, Cambien F, Rossing P, et al. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 1995 May; 44: 489–94

    PubMed  CAS  Google Scholar 

  49. Parving H-H, Jacobsen P, Tarnow L, et al. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study. BMJ 1996 Sep 7; 313: 591–4

    PubMed  CAS  Google Scholar 

  50. Huang X-H, Rantalaiho V, Wirta O, et al. Relationship of the angiotensin-converting enzyme gene polymorphism to glucose intolerance, insulin resistance, and hypertension in NIDDM. Hum Genet 1998; 102: 372–8

    PubMed  CAS  Google Scholar 

  51. Parving H-H. Renoprotection in diabetes: genetic and non-genetic risk factors and treatment. Diabetologia 1998; 41: 745–59

    PubMed  CAS  Google Scholar 

  52. Tarnow L, Rossing P, Nielsen FS, et al. Cardiovascular morbidity and early mortality cluster in parents of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 2000 Jan; 23(1): 30–3

    PubMed  CAS  Google Scholar 

  53. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia 1998; 41: 47–53

    PubMed  CAS  Google Scholar 

  54. Kunz R, Bork JP, Fritsche L, et al. Association between the angiotensin-converting enzyme-insertion/deletion polymorphism and diabetic nephropathy: a methodologic appraisal and systematic review. J Am Soc Nephrol 1998; 9: 1653–63

    PubMed  CAS  Google Scholar 

  55. World Health Organization. The World Health Report 1999 -making a difference [on line]. [Accessed 16Dec, 1999]World Health Organization. Available from: URL: http://www.oms.ch.whr/1999/en/pdf/whr99.pdf

  56. Amos AF, McCarty DJ, Zimmet P, et al. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med 1997; 14 Suppl. 5: S7–85

    Google Scholar 

  57. Eastman RC, Keen H. The impact of cardiovascular disease on people with diabetes: the potential for prevention. Lancet 1997 Jul; 350 Suppl. 1: SI29–32

    PubMed  Google Scholar 

  58. Kaseta JR, Skafar DF, Ram JL, et al. Cardiovascular disease in the diabetic woman. J Clin Endocrinol Metab 1999; 84(6): 1835–8

    PubMed  CAS  Google Scholar 

  59. Sowers JR. Diabetes mellitus and cardiovascular disease in women. Arch Intern Med 1998 Mar 23; 158: 617–21

    PubMed  CAS  Google Scholar 

  60. Barrett-Connor EL, Cohn BA, Wingard DL, et al. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo study. JAMA 1991 Feb 6; 265(5): 627–31

    PubMed  CAS  Google Scholar 

  61. Kannel WB. Metabolic risk factors for coronary heart disease in women: perspective from the Framingham Study. Am Heart J 1987 Aug; 114(2): 413–9

    PubMed  CAS  Google Scholar 

  62. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 1993 Feb; 16(2): 434–44

    PubMed  CAS  Google Scholar 

  63. The Hypertension in Diabetes Study Group. Hypertension in diabetes study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens 1993; 11:309–17

    Google Scholar 

  64. Jager A, Kostense PJ, Nijpels G, et al. Microalbuminuria is strongly associated with NIDDM and hypertension, but not with the insulin resistance syndrome: the Hoorn Study. Diabetologia 1998 Jun; 41: 694–700

    PubMed  CAS  Google Scholar 

  65. Gall M-A, Rossing P, Skøtt P, et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European Type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34: 655–61

    PubMed  CAS  Google Scholar 

  66. Collado-Mesa F, Colhoun HM, Stevens LK, et al. Prevalence and management of hypertension in type 1 diabetes mellitus in Europe: the EURODIAB IDDM Complications Study. Diabetic Med 1999 Jan; 16: 41–8

    PubMed  CAS  Google Scholar 

  67. Wang S-L, Head J, Stevens L, et al. Excess mortality and its relation to hypertension and proteinuria in diabetic patients: The World Health Organization Multinational Study of Vascular Disease in Diabetes. Diabetes Care 1996 Apr; 19(4): 305–12

    PubMed  CAS  Google Scholar 

  68. Turner RC, Millns H, Neil HAW, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ 1998 Mar 14; 316: 823–8

    PubMed  CAS  Google Scholar 

  69. Marshall SM. Blood pressure control, microalbuminuria and cardiovascular risk in Type 2 diabetes mellitus. Diabetic Med 1999 May; 16: 358–72

    PubMed  CAS  Google Scholar 

  70. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non—insulin-dependent diabetes mellitus: a systematic overview of the literature. Arch Intern Med 1997 Jul 14; 157: 1413–8

    PubMed  CAS  Google Scholar 

  71. Donnelly R, Molyneaux L, McGill M, et al. Detection and treatment of hypertension in patients with non-insulin-dependent diabetes mellitus: does the ‘rule of halves’ apply to a diabetic population? Diabetes Res Clin Pract 1997 Jul; 37: 35–40

    PubMed  CAS  Google Scholar 

  72. Bloomgarden ZT. The European Association for the Study of Diabetes annual meeting, 1998: The UK Prospective Diabetes Study and other topics in type 2 diabetes. Diabetes Care 1999 Jun; 22(6): 989–95

    PubMed  CAS  Google Scholar 

  73. O’Brien JA, Shomphe LA, Kavanagh PL, et al. Direct medical costs of complications resulting from type 2 diabetes in the U.S. Diabetes Care 1998 Jul; 21(7): 1122–8

    PubMed  Google Scholar 

  74. Brown JB, Nichols GA, Glauber HS, et al. Type 2 diabetes: incremental medical care costs during the first 8 years after diagnosis. Diabetes Care 1999 Jul; 22(7): 1116–24

    PubMed  CAS  Google Scholar 

  75. UK Prospective Diabetes Study Group. Cost effectiveness analysis of improved blood pressure control in hypertensive patients with type 2 diabetes: UKPDS 40. BMJ 1998 Sep 12; 317:720–6

    Google Scholar 

  76. Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM: II. Analysis of the health benefits and cost-effectiveness of treating NIDDM with the goal of normoglycemia. Diabetes Care 1997 May; 20(5): 735–44

    PubMed  CAS  Google Scholar 

  77. Jönsson B, Cook JR, Pedersen TR. The cost-effectiveness of lipid lowering in patients with diabetes: results from the 4S trial. Diabetologia 1999; 42: 1293–301

    PubMed  Google Scholar 

  78. Barnett AH, Law VA, Lecomte PP, et al. Economic evaluation of angiotensin converting enzyme inhibitors in the prevention of diabetic nephropathy [abstract no. 1036]. Diabetologia 1999 Aug; 42 Suppl. 1: A274

    Google Scholar 

  79. Clark WF, Churchill DN, Forwell L, et al. To pay or not to pay? A decision and cost-utility analysis of angiotensin-converting-enzyme inhibitor therapy for diabetic nephropathy. Can Med Assoc J 2000 Jan 25; 162(2): 195–8

    CAS  Google Scholar 

  80. Golan L, Birkmeyer JD, Welch HG. The cost-effectiveness of treating all patients with type 2 diabetes with angiotensin-converting enzyme inhibitors. Ann Intern Med 1999 Nov 2; 131(9): 660–7

    PubMed  CAS  Google Scholar 

  81. Kiberd BA, Jindal KK. Routine treatment of insulin-dependent diabetic patients with ACE inhibitors to prevent renal failure: an economic evaluation. Am J Kidney Dis 1998 Jan; 31(1): 49–54

    PubMed  CAS  Google Scholar 

  82. Palmer AJ, Weiss C, Sendi PP, et al. The cost-effectiveness of different management strategies for Type I diabetes: a Swiss perspective. Diabetologia 2000; 43: 13–26

    PubMed  CAS  Google Scholar 

  83. Klonoff DC, Schwartz DM. An economic analysis of interventions for diabetes. Diabetes Care 2000 Mar; 23(3): 390–404

    PubMed  CAS  Google Scholar 

  84. Donnelly R, Emslie-Smith AM, Gardner ID, et al. ABC of arterial and venous disease: vascular complications of diabetes. BMJ 2000 Apr 15; 320: 1062–6

    PubMed  CAS  Google Scholar 

  85. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993 Sep 30; 329(14): 977–86

    Google Scholar 

  86. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000 Feb 10; 342(6): 381–9

    Google Scholar 

  87. Gaede P, Vedel P, Parving H-H, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 1999 Feb 20; 353: 617–22

    PubMed  CAS  Google Scholar 

  88. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28: 103–17

    PubMed  CAS  Google Scholar 

  89. Feld S, Hellman R, Dickey RA, et al. The American Association of Clinical Endocrinologists Medical Guidelines for the Management of Diabetes Mellitus: The AACE System of Intensive Diabetes Self-Management—1999 update. Endocrine Practice 2000 Jan/Feb; 6 (1): (in press) [Available online at: http://aace.com/]

  90. Herman WH. Clinical evidence: glycaemic control in diabetes. BMJ 1999 Jul 10; 319: 104–6

    PubMed  CAS  Google Scholar 

  91. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S27–31

    Google Scholar 

  92. American Diabetes Association. Aspirin therapy in diabetes [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S61–2

    Google Scholar 

  93. American Diabetes Association. Management of dyslipidemia in adults with diabetes [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S57–60

    Google Scholar 

  94. European Diabetes Policy Group 1998. A desktop guide to Type 1 (insulin-dependent) diabetes mellitus. Diabetic Med 1999; 16: 253–66

    Google Scholar 

  95. European Diabetes Policy Group 1999. Adesktopguide to Type 2 diabetes mellitus. Diabetic Med 1999 Sep; 16: 716–30

    Google Scholar 

  96. Ramsay LE, Williams B, Johnston GD, et al. Guidelines for management of hypertension: report of the third working party of the British Hypertension Society. J Hum Hypertens 1999 Sep; 13: 569–92

    PubMed  CAS  Google Scholar 

  97. Ramsay LE, Williams B, Johnston GD, et al. British Hypertension Society guidelines for hypertension management 1999: summary. BMJ 1999 Sep 4; 319: 630–5

    PubMed  CAS  Google Scholar 

  98. Guidelines Subcommittee of the World Health Organization —International Society of Hypertension (WHO-ISH). 1999 World Health Organization — International Society of Hypertension Guidelines for the Management of Hypertension. J Hypertens 1999; 17(2): 151–83

    Google Scholar 

  99. Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure and the National High Blood Pressure Education Program Coordinating Committee. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med 1997 Nov 24; 157: 2413–46

  100. American Diabetes Association. Standards of medical care for patients with diabetes mellitus [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S32–42

    Google Scholar 

  101. American Diabetes Association. Diabetes mellitus and exercise [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S50–4

    Google Scholar 

  102. American Diabetes Association. Nutrition recommendations and principles for people with diabetes mellitus [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S43–46

    Google Scholar 

  103. Carretero OA, Oparil S. Essential hypertension. Part II: treatment. Circulation 2000 Feb 1; 101: 446–53

    PubMed  CAS  Google Scholar 

  104. Jacobson AM. The psychological care of patients with insulin-dependent diabetes mellitus. N Engl J Med 1996 May 9; 334(19): 1249–53

    PubMed  CAS  Google Scholar 

  105. American Diabetes Association. Smoking and diabetes [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S63–64

    Google Scholar 

  106. Eriksson J, Lindström J, Valle T, et al. Prevention of Type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland: study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia 1999; 42: 793–801

    PubMed  CAS  Google Scholar 

  107. Dyson PA, Hammersley MS, Morris RJ, et al. The Fasting Hyperglycaemia Study: II. Randomized controlled trial of reinforced healthy-living advice in subjects with increased but not diabetic fasting plasma glucose. Metabolism 1997 Dec; 46(12 Suppl. 1): 50–5

    PubMed  CAS  Google Scholar 

  108. Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss, and diet composition on plasma lipids and glucose in patients with type 2 diabetes. Diabetes Care 1999 Jun; 22(6): 889–95

    PubMed  CAS  Google Scholar 

  109. Gumbiner B. Treating obesity in type 2 diabetes: calories, composition and control [editorial]. Diabetes Care 1999 Jun; 22(6): 886–8

    PubMed  CAS  Google Scholar 

  110. Uchimoto S, Tsumura K, Hayashit T, et al. Impact of cigarette smoking on the incidence of Type 2 diabetes mellitus in middle-aged Japanese men: the Osaka Health Survey. Diabetic Med 1999; 16: 951–5

    PubMed  CAS  Google Scholar 

  111. Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care 1999 Nov; 22(11): 1887–98

    PubMed  CAS  Google Scholar 

  112. Guzman CB, Sowers JR. Special considerations in the therapy of diabetic hypertension. Prog Cardiovasc Dis 1999 May/Jun; 41(6): 461–70

    PubMed  CAS  Google Scholar 

  113. O’Driscoll G, Green D, Maiorana A, et al. Improvement in endothelial function by angiotensin-converting enzyme inhibition in non—insulin-dependent diabetes mellitus. J Am Coll Cardiol 1999 May; 33(6): 1506–11

    PubMed  Google Scholar 

  114. Moan A, Os I, Hjermann I, et al. Hypertension therapy and risk of coronary heart disease: how do antihypertensives affect metabolic factors? Cardiology 1995; 86: 89–93

    PubMed  CAS  Google Scholar 

  115. Moan A, Hoieggen A, Seljeflot I, et al. The effect of angiotensin II receptor antagonism with losartan on glucose metabolism and insulin sensitivity. Hypertension 1996 Sep; 14(9): 1093–7

    CAS  Google Scholar 

  116. Trenkwalder P, Dahl K, Lehtovirta M, et al. Antihypertensive treatment with candesartan cilexetil does not affect glucose homeostasis or serum lipid profile in patients with mild hypertension and type II diabetes. Blood Press 1998 May; 7(3): 170–5

    PubMed  CAS  Google Scholar 

  117. Savage PJ, Pressel SL, Curb JD, et al. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: the Systolic Hypertension in the Elderly Program. Arch Intern Med 1998 Apr 13; 158: 741–51

    PubMed  CAS  Google Scholar 

  118. Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N Engl J Med 2000 Mar 30; 342(13): 905–12

    PubMed  CAS  Google Scholar 

  119. Majumdar SR. Beta-blockers for the treatment of hypertension in patients with diabetes: exploring the contraindication myth. Cardiovasc Drugs Ther 1999; 13: 435–9

    PubMed  CAS  Google Scholar 

  120. British Cardiac Society, British Hyperlipidaemia Association, British Hypertension Society, et al. Joint British recommendations on prevention of coronary heart disease in clinical practice: summary. BMJ 2000 Mar 11; 320: 705–8

    Google Scholar 

  121. Fisher CM. The ascendancy of diastolic blood pressure over systolic. Lancet 1985 Dec 14; 1: 1349–50

    Google Scholar 

  122. Black HR. The paradigm has shifted, to systolic blood pressure. Hypertension 1999; 34: 386–7

    PubMed  CAS  Google Scholar 

  123. Lloyd-Jones D, Evans JC, Larson MG, et al. Differential impact of systolic and diastolic blood pressure level on JNC-VI staging. Hypertension 1999 Sep; 34: 381–5

    PubMed  CAS  Google Scholar 

  124. Smulyan H, Safar ME. The diastolic blood pressure in systolic hypertension. Ann Intern Med 2000 Feb 1; 132(3): 233–7

    PubMed  CAS  Google Scholar 

  125. Sever PS. Simple blood pressure guidelines for primary health care. J Hum Hypertens 1999; 13: 725–7

    PubMed  CAS  Google Scholar 

  126. Prisant LM, Moser M. Hypertension in the elderly: can we improve results of therapy? Arch Intern Med 2000 Feb 14; 160: 283–9

    PubMed  CAS  Google Scholar 

  127. Amery A, Birkenhäger W, Brixko P, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. Lancet 1985 Jun 15; I(8442): 1349–54

    Google Scholar 

  128. Curb JD, Pressel SL, Cutler JA, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. JAMA 1996 Dec 18; 276(23): 1886–92

    PubMed  CAS  Google Scholar 

  129. Dahlöf B, Lindholm LH, Hansson L, et al. Morbidity and mortality in the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension). Lancet 1991 Nov 23; 338(8778): 1281–5

    PubMed  Google Scholar 

  130. Tuomilehto J, Rastenyte D, Birkenhager WH, et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. N Engl J Med 1999 Mar 4; 340(9): 677–84

    PubMed  CAS  Google Scholar 

  131. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease: Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 1990 Apr 7; 335: 827–38

    PubMed  CAS  Google Scholar 

  132. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998 Sep 12; 317: 713–20

    Google Scholar 

  133. Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999 Feb 20; 353: 611–6

    PubMed  CAS  Google Scholar 

  134. Estacio RO, Jeffers BW, Hiatt WR, et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998 Mar 5; 338(10): 645–51

    PubMed  CAS  Google Scholar 

  135. Tatti P, Pahor M, Byington RP, et al. Outcome results of the Fosinopril versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998; 21(4): 597–603

    PubMed  CAS  Google Scholar 

  136. Sowers JR. Comorbidity of hypertension and diabetes: the Fosinopril versus Amlodipine Cardiovascular Events Trial (FACET). Am J Cardiol 1998 Nov 12; 82 Suppl. 9B: 15R–9R

    PubMed  CAS  Google Scholar 

  137. Califf RM, Granger CB. Hypertension and diabetes and the Fosinopril versus Amlodipine Cardiovascular Events Trial (FACET): more ammunition against surrogate end points. Diabetes Care 1998 Apr; 21(4): 655–7

    PubMed  CAS  Google Scholar 

  138. Estacio RO, Schrier RW. Antihypertensive therapy in type 2 diabetes: implications of the Appropriate Blood Pressure Control in Diabetes (ABCD) trial. Am J Cardiol 1998 Nov 12; 82(9B):9R–14R

    PubMed  CAS  Google Scholar 

  139. Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med 1999 Nov 4; 341(19): 1447–57

    PubMed  CAS  Google Scholar 

  140. Pahor M, Tatti P. The Fosinopril versus Amlodipine Cardiovascular Events Trial (FACET) and combination therapy [letter]. Am J Cardiol 1999 Mar 1; 83: 819–20

    PubMed  CAS  Google Scholar 

  141. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998 Jun 13; 351: 1755–62

    PubMed  CAS  Google Scholar 

  142. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity in the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 1999 Nov 20; 354(9192): 1751–6

    PubMed  CAS  Google Scholar 

  143. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000 Jan 20; 342(3): 145–53

    Google Scholar 

  144. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000 Jan 22; 355(9200): 253–9

    Google Scholar 

  145. The HOPE Study Investigators. The HOPE (Heart Outcomes Prevention Evaluation) Study: the design of a large, simple randomized trial of an angiotensin-converting enzyme inhibitor (ramipril) and vitamin E in patients at high risk of cardiovascular events. Can J Cardiol 1996 Feb; 12(2): 127–37

    Google Scholar 

  146. Fox C. Diabetes and hypertension: an era of clarity or confusion? J Hum Hypertens 1999 Apr; 13 Suppl. 2: S9–17

    PubMed  Google Scholar 

  147. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998; 317: 703–13

    Google Scholar 

  148. Hypertension in Diabetes Study Group. Hypertension in diabetes study IV. Therapeutic requirements to maintain tight blood pressure control. Diabetologia 1996; 39: 1554–61

    Google Scholar 

  149. Salvetti A, Mattel P, Sudano I. Renal protection and antihypertensive drugs: current status. Drugs 1999 May; 57: 665–93

    PubMed  CAS  Google Scholar 

  150. Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia 1999; 42: 263–85

    PubMed  CAS  Google Scholar 

  151. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999 Oct 7; 341(15): 1127–33

    PubMed  CAS  Google Scholar 

  152. Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998 Jul 18; 352: 213–9

    PubMed  CAS  Google Scholar 

  153. Ismail N, Becker B, Strzelczyk P, et al. Renal disease and hypertension in non—insulin-dependent diabetes mellitus. Kidney Int 1999; 55: 1–28

    PubMed  CAS  Google Scholar 

  154. American Diabetes Association. Diabetic Nephropathy [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S69–72

    Google Scholar 

  155. Tomson CRV. Recent Advances: Nephrology. BMJ 2000 Jan 8; 320: 98–101

    PubMed  CAS  Google Scholar 

  156. Sawicki PT. Do ACE inhibitors offer specific benefits in the antihypertensive treatment of diabetic patients? 17 years of unfulfilled promises. Diabetologia 1998; 41: 598–602

    PubMed  CAS  Google Scholar 

  157. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993 Nov 11; 329(20): 1456–62

    PubMed  CAS  Google Scholar 

  158. Wilmer AW, Hebert LA, Lewis EJ, et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am J Kidney Dis 1999 Aug; 34(2): 308–14

    PubMed  CAS  Google Scholar 

  159. Lewis JB, Berl T, Bain RP, et al. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Am J Kidney Dis 1999 Nov; 34(5): 809–17

    PubMed  CAS  Google Scholar 

  160. Ravid M, Savin H, Jutrin I, et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993 Apr 15; 118(8): 577–81

    PubMed  CAS  Google Scholar 

  161. Trocha AK, Schmidtke C, Didjurgeit U, et al. Effects of intensified antihypertensive treatment in diabetic nephropathy: mortality and morbidity results of a prospective controlled 10-year study. Hypertension 1999 Oct; 17(10): 1497–503

    CAS  Google Scholar 

  162. UK Prospective Diabetes Study Group. Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control (UKPDS 37). Diabetes Care 1999 Jul; 22(7): 1125–36

    Google Scholar 

  163. Zuanetti G, Latini R, Maggioni AP, et al. Effect of the ACE inhibitor lisinopril on mortality in diabetic patients with acute myocardial infarction: data from the GISSI-3 study. Circulation 1997 Dec 16; 96(12): 4239–45

    PubMed  CAS  Google Scholar 

  164. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation 1999; 100: 1–7

    Google Scholar 

  165. AstraZeneca. Zestril prescribing summary (rev 12/98) [on line]. [Accessed 18 April, 2000]. Zeneca Pharmaceuticals USA. Available from: URL: http://167.2.16.105/pi/pibs_zestril.htm

  166. AstraZeneca. Zestoretic prescribing summary (rev 1/98) [on line]. [Accessed 18 April, Dec 1999]. Zeneca Pharmaceuticals USA. Available from: URL: http://167.2.16.105/pi/pibs_zestoretic.htm

  167. British National Formulary. No. 38. London: The Pharmaceutical Press, Sep 1999

  168. AstraZeneca. Zestril. Summary of Product Characteristics.

  169. AstraZeneca. Zestoretic. Summary of Product Characteristics.

  170. Valimaki MJ. Lisinopril in the treatment of diabetic patients with moderate essential hypertension [abstract]. Diabetes 1991 May; 40 Suppl. 1:371

    Google Scholar 

  171. Corradi L, Zoppi A, Tettamanti F, et al. Association between smoking and micro-albuminuria in hypertensive patients with type 2 diabetes mellitus. J Hypertens 1993 Dec; 11 Suppl. 5: S190–1

    CAS  Google Scholar 

  172. Gonera RK, van der Heul C, van Boven WPL. Effects of lisinopril and metoprolol on microalbuminuria in hypertensive patients with non-insulin-dependent-diabetes-mellitus [abstract]. Nephrol Dial Transplant 1994; 9(7): 953–4

    Google Scholar 

  173. Rohr G, for the Lisinopril/Metoprolol Study Group. Evaluation of the antihypertensive effect of lisinopril compared to metoprolol in patients with diabetes mellitus (type II) and mild to moderate hypertension. In: Keane WF, editor. A focus on the clinical effects of a long acting ACE inhibitor/hypertension. New York: Raven Press, 1990: 83–9

    Google Scholar 

  174. Agardh C-D, Garcia-Puig J, Charbonnel B, et al. Greater reduction of urinary albumin excretion in hypertensive type II diabetic patients with incipient nephropathy by lisinopril than by nifedipine. J Hum Hypertens 1996 Mar; 10: 185–92

    PubMed  CAS  Google Scholar 

  175. Friedman N, Anzalone D, Wilson A, et al. Efficacy of lisinopril and nifedipine GITS in hypertension associated with non-insulin dependent diabetes [abstract]. Diabetes 1994; 43 Suppl. 1:59

    Google Scholar 

  176. Grandinetti O, Cosentino G, Feraco E. Lisinopril versus ramipril: efficacy and safety in elderly hypertensives with non-insulin dependent diabetes mellitus [abstract]. J Hypertens 1992 Jun; 10 Suppl. 4: 222

    Google Scholar 

  177. Slataper R, Vicknair N, Sadler R. Comparative effects of different antihypertensive treatments on progression of diabetic renal disease. Arch Intern Med 1993 Apr 26; 153: 973–80

    PubMed  CAS  Google Scholar 

  178. Bakris GL, Barnhill BW, Sadler R. Treatment of arterial hypertension in diabetic humans: importance of therapeutic selection. Kidney Int 1992 Apr; 41: 912–9

    PubMed  CAS  Google Scholar 

  179. Crepaldi G, Carraro A, Brocco E, et al. Hypertension and non-insulin-dependent diabetes: a comparison between an angiotensin-converting enzyme inhibitor and a calcium antagonist. Acta Diabetol 1995; 32: 203–8

    PubMed  CAS  Google Scholar 

  180. Holdaas H, Hartmann A, Lien MG, et al. Contrasting effects of lisinopril and nifedipine on albuminuria and tubular transport functions in insulin dependent diabetics with nephropathy. J Intern Med 1991 Feb; 229: 163–70

    PubMed  CAS  Google Scholar 

  181. Rossing P, Tarnow L, Boelskifte S, et al. Differences between nisoldipine and lisinopril on glomerular filtration rates and albuminuria in hypertensive IDDM patients with diabetic nephropathy during the first year of treatment. Diabetes 1997 Mar; 46: 481–7

    PubMed  CAS  Google Scholar 

  182. Nielsen FS, Rossing P, Gall M-A, et al. Impact of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes 1994 Sep; 43: 1108–13

    PubMed  CAS  Google Scholar 

  183. Nielsen FS, Rossing P, Gall M-A, et al. Long-term effect of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes 1997 Jul; 46: 1182–8

    PubMed  CAS  Google Scholar 

  184. Bakris GL, Copley JB, Vicknair N. Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 1996 Nov; 50: 1641–50

    PubMed  CAS  Google Scholar 

  185. O’Donnell MJ, Rowe BR, Lawson N, et al. Comparison of the effects of an angiotensin converting enzyme inhibitor and a calcium antagonist in hypertensive, macroproteinuric diabetic patients: a randomised double-blind study. J Hum Hypertens 1993 Aug; 7: 333–9

    PubMed  Google Scholar 

  186. Hasslacher C. Influence of the ACE inhibitor lisinopril on blood pressure, metabolism, and renal function parameter in hypertensive type II diabetic patients: a postmarketing surveillance study. J Diabetes Complications 1996 May–Jun; 10: 136–8

    PubMed  CAS  Google Scholar 

  187. Sorensen VB, Rossing P, Tarnow L, et al. Effects of nisoldipine and lisinopril on microvascular dysfunction in hypertensive Type I diabetes patients with nephropathy. Clin Sci 1998 Dec; 95: 709–17

    PubMed  CAS  Google Scholar 

  188. Tarnow L, Sato A, Ali S, et al. Effects of nisoldipine and lisinopril on left ventricular mass and function in diabetic nephropathy. Diabetes Care 1999 Mar; 22: 491–4

    PubMed  CAS  Google Scholar 

  189. Kendall MJ. Conventional versus newer antihypertensive therapies — a draw [editorial]. Lancet 1999 Nov 20; 354(9192): 1744–5

    PubMed  CAS  Google Scholar 

  190. Davis BR, Cutler JA, Gordon DJ, et al. Rationale and design for the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Am J Hypertens 1996 Apr; 9(4): 342–60

    PubMed  CAS  Google Scholar 

  191. National Institutes of Health. NHLBI stops part of study — high blood pressure drug performs no better than standard treatment [on line]. [Accessed 2000, Mar 10] NIH News Release. Available from: URL: http://www.nih.gov/news/pr/mar2000/nhlbi-08.htm

  192. Messerli FH. Implications of discontinuation of doxazosin ami of ALLHAT [commentary]. Lancet 2000 March 11; 355: 863–4

    PubMed  CAS  Google Scholar 

  193. The EUCLID study group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet 1997 Jun 21; 349: 1787–92

    Google Scholar 

  194. Bakris GL, Slataper R, Vicknair N. ACE inhibitor mediated reductions in renal size and microalbuminuria in normotensive, diabetic subjects. J Diabetes Complications 1994 Jan–Mar; 8: 2–6

    PubMed  CAS  Google Scholar 

  195. O’Donnell MJ, Rowe BR, Lawson N, et al. Placebo-controlled trial of lisinopril in normotensive patients with incipient nephropathy. J Hum Hypertens 1993 Aug; 7: 327–32

    PubMed  Google Scholar 

  196. Crepaldi G, Carta Q, Deferrari G, et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. Diabetes Care 1998 Jan; 21(1): 104–10

    PubMed  CAS  Google Scholar 

  197. Penno G, Chaturvedi N, Talmud PJ, et al. Effect of angiotensinconverting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition on IDDM patients: findings from the EUCLID randomized controlled trial. Diabetes 1998 Sep; 47: 1507–11

    PubMed  CAS  Google Scholar 

  198. American Diabetes Association. Diabetic Retinopathy [Position Statement]. Diabetes Care 2000 Jan; 23 Suppl. 1: S73–76

    Google Scholar 

  199. Chaturvedi N, Sjolie A-K, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive paeople with type 1 diabetes. Lancet 1998 Jan 3; 351: 28–31

    PubMed  CAS  Google Scholar 

  200. Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine. Is this a cause for concern? Arch Intern Med 2000 Mar 13; 160: 685–93

    PubMed  CAS  Google Scholar 

  201. Mogensen CE. Combined high blood pressure and glucose in type 2 diabetes: double jeopardy: British trial shows clear effects of treatment, especially blood pressure reduction. BMJ 1998 Sep 12; 317: 693–4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: T. Baba, Department of Internal Medicine 3, Fukushima Medical University School of Medicine, Fukushima, Japan; T. Chowdhury, The Jeffrey Kelson Diabetic Centre, The North West London Hospitals NHS Trust, Central Middlesex Hospital, London, England; M.E. Cooper, Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, West Heidelberg, Victoria, Australia; P. Drury, Department of Medicine, University of Auckland, Auckland, New Zealand; E. Fineberg, Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana, USA; C. Fox, Diabetes Centre, Northampton General Hospital NHS Trust, Northampton, England; C. Hasslacher, St. Josefskrankenhaus Heidelberg, Akademisches Lehrkrankenhaus der Universitat Heidelberg, Heidelberg, Germany; D. Jones, University of Mississippi Medical Center, Jackson, Mississippi, USA; S.M. Marshall, Department of Diabetes and Metabolism, School of Clinical Medical Sciences, The Medical School, University of Newcastle, Newcastle upon Tyne, England; G. Zuanetti, Instituto di Ricerche Farmacologiche, Mario Negri, Milan, Italy.

Data Selection

Sources: Medical literature published in any language since 1989 on Lisinopril, identified using AdisBase (a proprietary database of Adis International, Auckland, New Zealand). Additional references were identified from the reference lists of published articles. Bibliographical information, including contributory unpublished data, was also requested from the company developing the drug.

Search strategy: AdisBase search terms were ‘Hypertension-in-diabetes’ and (‘guideline’ or ‘guideline-utilisation’ or ‘practice-guideline’ or ‘disease-management-programmes’ or ‘treatment-algorithms’ or ‘reviews-on-treatment’ or ‘drug-evaluations’ or ‘epidemiology’ or ‘cost-of-illness’ or ‘pathogenesis’), or ‘Lisinopril’ or ‘MK-521’ and (‘review’ or ‘clinical-study’). Searches were last updated 17, Apr 2000.

Selection: Studies in patients with diabetes mellitus and hypertension who received lisinopril. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic, pharmacokinetic, pharmacoeconomic and epidemiological data are also included.

Index terms: Diabetes mellitus, hypertension, lisinopril, disease management, review on treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, B., Spencer, C.M. Management of Hypertension in Patients with Diabetes Mellitus. Dis-Manage-Health-Outcomes 7, 267–288 (2000). https://doi.org/10.2165/00115677-200007050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00115677-200007050-00004

Keywords

Navigation