Skip to main content
Log in

MicroRNAs in the Search for Understanding Human Diseases

  • Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

MiroRNAs (miRNAs) are double-stranded, noncoding RNA molecules (with an average size of 22bp) that serve as post-transcriptional regulators of gene expression in higher eukaryotes. miRNAs play an important role in development and other cellular processes by hybridizing with complementary target mRNA transcripts, preventing their translation and thereby destabilizing the target transcripts. Though hundreds of miRNAs have been discovered in a variety of organisms, little is known about their cellular function. They have been implicated in the regulation of developmental timing and pattern formation, restriction of differentiation potential, regulation of insulin secretion, resistance to viral infection, and in genomic rearrangements associated with carcinogenesis or other genetic disorders, such as fragile X syndrome. Recent evidence suggests that the number of unique miRNA genes in humans exceeds 1000, and may be as high as 20 000. It is estimated that 20–30% of all human mRNAs are miRNA targets.

During the last few years, special attention has been given to miRNAs as candidate drug targets for cancer, diabetes mellitus, obesity, and viral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003; 113(6): 673–6

    Article  PubMed  CAS  Google Scholar 

  2. Bartel B, Bartel DP. MicroRNAs: at the root of plant development? Plant Physiol 2003; 132(2): 709–17

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–97

    Article  PubMed  CAS  Google Scholar 

  4. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408(6808): 86–9

    Article  PubMed  CAS  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843–54

    Article  PubMed  CAS  Google Scholar 

  6. Lakatos L, Csorba T, Pantaleo V, et al. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 2006; 25(12): 2768–80

    Article  PubMed  CAS  Google Scholar 

  7. Yu B, Chapman EJ, Yang Z, et al. Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett 2006; 580(13): 3117–20

    Article  PubMed  CAS  Google Scholar 

  8. Grey F, Antoniewicz A, Allen E, et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 2005; 79(18): 12095–9

    Article  PubMed  CAS  Google Scholar 

  9. Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002; 16(13): 1616–26

    Article  PubMed  CAS  Google Scholar 

  10. Lai EC, Tomancak P, Williams RW, et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003; 4(7): R42

    Article  PubMed  Google Scholar 

  11. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17(8): 991–1008

    Article  PubMed  CAS  Google Scholar 

  12. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37(7): 766–70

    Article  PubMed  CAS  Google Scholar 

  13. Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120(1): 21–4

    Article  PubMed  CAS  Google Scholar 

  14. Tuccoli A, Poliseno L, Rainaldi G. miRNAs regulate miRNAs: coordinated transcriptional and post-transcriptional regulation. Cell Cycle 2006; 5 (21): Epub ahead of print

  15. Matzke M, Aufsatz W, Kanno T, et al. Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 2004; 1677(1–3): 129–41

    PubMed  CAS  Google Scholar 

  16. Jia S, Noma K, Grewal SI. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 2004; 304(5679): 1971–6

    Article  PubMed  CAS  Google Scholar 

  17. Martienssen R, Lippman Z, May B, et al. Transposons, tandem repeats, and the silencing of imprinted genes. Cold Spring Harb Symp Quant Biol 2004; 69: 371–9

    Article  PubMed  CAS  Google Scholar 

  18. Martienssen RA, Zaratiegui M, Goto DB. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 2005 Aug; 21(8): 450–6

    Article  PubMed  CAS  Google Scholar 

  19. Mette MF, Matzke AJ, Matzke MA. Resistance of RNA-mediated TGS to HC-Pro, a viral suppressor of PTGS, suggests alternative pathways for dsRNA processing. Curr Biol 2001 Jul 24; 11(14): 1119–23

    Article  PubMed  CAS  Google Scholar 

  20. Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002 Feb 14; 415(6873): 810–3

    Article  PubMed  CAS  Google Scholar 

  21. Noma K, Sugiyama T, Cam H, et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004 Nov; 36(11): 1174–80

    Article  PubMed  CAS  Google Scholar 

  22. Robins H, Li Y, Padgett RW. Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 2005; 102(11): 4006–9

    Article  PubMed  CAS  Google Scholar 

  23. Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006; 22(3): 165–73

    Article  PubMed  CAS  Google Scholar 

  24. Hill AE, Hong JS, Wen H, et al. Micro-RNA-like effects of complete intronic sequences. Front Biosci 2006; 11: 1998–2006

    Article  PubMed  CAS  Google Scholar 

  25. Ying SY, Lin SL. Intronic microRNAs. Biochem Biophys Res Commun 2005; 326(3): 515–20

    Article  PubMed  CAS  Google Scholar 

  26. Ying SY, Lin SL. Intron-derived microRNAs: fine tuning of gene functions. Gene 2004; 342(1): 25–8

    Article  PubMed  CAS  Google Scholar 

  27. Ying SY, Lin SL. Current perspectives in intronic micro RNAs (miRNAs). J Biomed Sci 2006; 13(1): 5–15

    Article  PubMed  CAS  Google Scholar 

  28. Stole V, Samanta MP, Tongprasit W, et al. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci U S A 2005; 102(12): 4453–8

    Article  Google Scholar 

  29. Robins H, Press WH. Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs. Proc Natl Acad Sci U S A 2005; 102(43): 15557–62

    Article  PubMed  CAS  Google Scholar 

  30. Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005; 434(7031): 338–45

    Article  PubMed  CAS  Google Scholar 

  31. Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120(5): 623–34

    Article  PubMed  CAS  Google Scholar 

  32. Ambros V, Lee RC, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 2003; 13(10): 807–18

    Article  PubMed  CAS  Google Scholar 

  33. Tijsterman M, Plasterk RH. Dicers at RISC: the mechanism of RNAi. Cell 2004; 117(1): 1–3

    Article  PubMed  CAS  Google Scholar 

  34. Yang WJ, Yang DD, Na S, et al. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005; 280(10): 9330–5

    Article  PubMed  CAS  Google Scholar 

  35. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004; 117(1): 69–81

    Article  PubMed  CAS  Google Scholar 

  36. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15–20

    Article  PubMed  CAS  Google Scholar 

  37. Vella MC, Reinert K, Slack FJ. Architecture of a validated microRNA::target interaction. Chem Biol 2004; 11(12): 1619–23

    Article  PubMed  CAS  Google Scholar 

  38. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 2004; 16(6): 861–5

    Article  PubMed  CAS  Google Scholar 

  39. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10(12): 1957–66

    Article  PubMed  CAS  Google Scholar 

  40. Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003; 17(4): 438–42

    Article  PubMed  CAS  Google Scholar 

  41. Zhang B, Pan X, Cobb GP, et al. Plant microRNA: a small regulatory molecule with big impact. Dev Biol 2006; 289(1): 3–16

    Article  PubMed  CAS  Google Scholar 

  42. Meyers BC, Souret FF, Lu C, et al. Sweating the small stuff: microRNA discovery in plants. Curr Opin Biotechnol 2006; 17(2): 139–46

    Article  PubMed  CAS  Google Scholar 

  43. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003; 301(5631): 336–8

    Article  PubMed  CAS  Google Scholar 

  44. Ambros V. microRNAs: tiny regulators with great potential. Cell 2001; 107(7): 823–6

    Article  PubMed  CAS  Google Scholar 

  45. Pasquinelli AE, Ruvkun G. Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol 2002; 18: 495–513

    Article  PubMed  CAS  Google Scholar 

  46. Finnegan EJ, Matzke MA. The small RNA world. J Cell Sci 2003; 116 (Pt 23): 4689–93

    Article  PubMed  CAS  Google Scholar 

  47. Ruvkun GB. The tiny RNA world. Harvey Lect 2003; 99: 1–21

    PubMed  Google Scholar 

  48. Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001; 292(5518): 929–34

    Article  PubMed  CAS  Google Scholar 

  49. Hobert O. Common logic of transcription factor and microRNA action. Trends Biochem Sci 2004; 29(9): 462–8

    Article  PubMed  CAS  Google Scholar 

  50. Dieterich C, Grossmann S, Tanzer A, et al. Comparative promoter region analysis powered by CORG. BMC Genomics 2005; 6(1): 24

    Article  PubMed  Google Scholar 

  51. Scitz H, Royo H, Lin SP, et al. Imprinted small RNA genes. Biol Chem 2004; 385(10): 905–11

    Google Scholar 

  52. Ronemus M, Martienssen R. RNA interference: methylation mystery. Nature 2005;433(7025): 472–3

    Article  PubMed  CAS  Google Scholar 

  53. Gyory I, Minarovits J. Epigenetic regulation of lymphoid specific gene sets. Biochem Cell Biol 2005; 83(3): 286–95

    Article  PubMed  Google Scholar 

  54. Bentwich I. A postulated role for microRNA in cellular differentiation. Faseb J 2005; 19(8): 875–9

    Article  PubMed  CAS  Google Scholar 

  55. Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron 2005; 46(3): 363–7

    Article  PubMed  CAS  Google Scholar 

  56. Cawley S, Bekiranov S, Ng HH, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004 Feb 20; 116(4): 499–509

    Article  PubMed  CAS  Google Scholar 

  57. Kampa D, Cheng J, Kapranov P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 2004 Mar; 14(3): 331–42

    Article  PubMed  CAS  Google Scholar 

  58. Lall S, Grun D, Krek A, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 2006; 16(5): 460–71

    Article  PubMed  CAS  Google Scholar 

  59. Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38Suppl. 1 (6s): S8–S13

    Article  PubMed  CAS  Google Scholar 

  60. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006; 33(2): 167–73

    Article  PubMed  CAS  Google Scholar 

  61. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 2006; 25(46): 6202–10

    Article  PubMed  CAS  Google Scholar 

  62. Jannot G, Simard MJ. Tumour-related microRNAs functions in Caenorhabditis elegans. Oncogene 2006; 25(46): 6197–201

    Article  PubMed  CAS  Google Scholar 

  63. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006; 25(46): 6188–96

    Article  PubMed  CAS  Google Scholar 

  64. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene 2006; 25(46): 6176–87

    Article  PubMed  CAS  Google Scholar 

  65. Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene 2006; 25(46): 6170–5

    Article  PubMed  CAS  Google Scholar 

  66. Hutvagner G. MicroRNAs and cancer: issue summary. Oncogene 2006; 25(46): 6154–5

    Article  CAS  Google Scholar 

  67. Osada H, Takahashi T. MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 2007 Jan; 28(1): 2–12

    Article  PubMed  CAS  Google Scholar 

  68. Zhang L, Coukos G. MicroRNAs: a new insight into cancer genome. Cell Cycle 2006 Oct; 5(19): 2216–9

    Article  PubMed  CAS  Google Scholar 

  69. Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006 Oct; 5(19): 2220–2

    Article  PubMed  CAS  Google Scholar 

  70. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102(39): 13944–9

    Article  PubMed  CAS  Google Scholar 

  71. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101(32): 11755–60

    Article  PubMed  CAS  Google Scholar 

  72. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353(17): 1793–801

    Article  PubMed  CAS  Google Scholar 

  73. Sevignani C, Calin GA, Siracusa LD, et al. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 2006; 17(3): 189–202

    Article  PubMed  CAS  Google Scholar 

  74. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25(17): 2537–45

    Article  PubMed  CAS  Google Scholar 

  75. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007 Mar; 120(5): 1046–54

    Article  PubMed  CAS  Google Scholar 

  76. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006; 26(21): 8191–201

    Article  PubMed  CAS  Google Scholar 

  77. Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32(22): el88

    Article  Google Scholar 

  78. Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279(50): 52361–5

    Article  PubMed  CAS  Google Scholar 

  79. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432(7014): 226–30

    Article  PubMed  CAS  Google Scholar 

  80. Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 2006; 4(1): 9–12

    Article  PubMed  CAS  Google Scholar 

  81. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436(7048): 214–20

    Article  PubMed  CAS  Google Scholar 

  82. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103(48): 18255–60

    Article  PubMed  Google Scholar 

  83. Cao X, Yeo G, Muotri AR, et al. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006; 29: 77–103

    Article  PubMed  CAS  Google Scholar 

  84. Bilen J, Liu N, Burnett BG, et al. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 2006; 24(1): 157–63

    Article  PubMed  CAS  Google Scholar 

  85. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005 Sep 2; 309(5740): 1577–81

    Article  PubMed  CAS  Google Scholar 

  86. Zhang J, Yamada O, Sakamoto T, et al. Inhibition of hepatitis C virus replication by pol Ill-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology 2005; 342(2): 276–85

    Article  PubMed  CAS  Google Scholar 

  87. Bennasser Y, Le SY, Yeung ML, et al. MicroRNAs in human immunodeficiency virus-1 infection. Methods Mol Biol 2006; 342: 241–53

    Google Scholar 

  88. Cullen BR. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 2006; 7(6): 563–7

    Article  PubMed  CAS  Google Scholar 

  89. Berezikov E, Thuemmler F, van Laake LW, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38(12): 1375–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation (grant EIA-0205061) to Dr Ray and a grant from the Memorial Health Medical Center to Dr Perera.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perera, R.J., Ray, A. MicroRNAs in the Search for Understanding Human Diseases. BioDrugs 21, 97–104 (2007). https://doi.org/10.2165/00063030-200721020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200721020-00004

Keywords

Navigation