Skip to main content

The Application of Recombinant Human Collagen in Tissue Engineering

Abstract

Collagen is the main structural protein in vertebrates. It plays an essential role in providing a scaffold for cellular support and thereby affecting cell attachment, migration, proliferation, differentiation, and survival. As such, it also plays an important role in numerous approaches to the engineering of human tissues for medical applications related to tissue, bone, and skin repair and reconstruction. Currently, the collagen used in tissue engineering applications is derived from animal tissues, creating concerns related to the quality, purity, and predictability of its performance. It also carries the risk of transmission of infectious agents and precipitating immunological reactions. The recent development of recombinant sources of human collagen provides a reliable, predictable and chemically defined source of purified human collagens that is free of animal components. The triple-helical collagens made by recombinant technology have the same amino acid sequence as human tissue-derived collagen. Furthermore, by achieving the equivalent extent of proline hydroxylation via coexpression of genes encoding prolyl hydroxylase with the collagen genes, one can produce collagens with a similar degree of stability as naturally occurring material. The recombinant production process of collagen involves the generation of single triple-helical molecules that are then used to construct more complex three-dimensional structures. If one loosely defines tissue engineering as the use of a biocompatible scaffold combined with a biologically active agent (be it a gene or gene construct, growth factor or other biologically active agent) to induce tissue regeneration, then the production of recombinant human collagen enables the engineering of human tissue based on a human matrix or scaffold. Recombinant human collagens are an efficient scaffold for bone repair when combined with a recombinant bone morphogenetic protein in a porous, sponge-like format, and when presented as a membrane, sponge or gel can serve as a basis for the engineering of skin, cartilage and periodontal ligament, depending on the specific requirements of the chosen application.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. 1.

    Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000; 53(6): 617–20

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Fox CF, Skalak R. Tissue engineering. New York: John Wiley and Sons, 1988

    Google Scholar 

  3. 3.

    Godbey WT, Atala A. In vitro systems for tissue engineering. Ann N Y Acad sci 2002; 961: 10–26

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad sci 2002; 961: 83–95

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Lysaght MJ, Reyes J. The growth of tissue engineering. Tissue Eng 2001; 7 (5): 485–93

    Google Scholar 

  6. 6.

    Makarand V. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 2002; 20(8): 351–6

    Article  Google Scholar 

  7. 7.

    Pearson RG, Bhandari R, Quirk RA, et al. Recent advances in tissue engineering: an invited review. J Long Term Eff Med Implants 2002; 12(1): 1–33

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Vunjak-Novakovic G, Obradovic B, Martin I, et al. Bioreactor studies of native and tissue engineered cartilage. Biorheology 2002; 39(1-2): 259–68

    PubMed  CAS  Google Scholar 

  9. 9.

    Blunk T, Sieminski AL, Gooch KJ, et al. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 2002; 8(1): 73–84

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Pei M, scidel J, Vunjak-Novakovic G, et al. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 2002; 294: 149–54

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    vVan Osch GJ, Mandl EW, Marijnissen WJ, et al. Growth factors in cartilage tissue engineering. Biorheology 2002; 39(1–2): 215–20

    PubMed  Google Scholar 

  12. 12.

    Silver FH, Pins G. Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants 1992; 2(1): 67–80

    PubMed  CAS  Google Scholar 

  13. 13.

    Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401–16

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002; 23(20): 4131–41

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Berisio R, Vitagliano L, Mazzarella L, et al. Recent progress on collagen triple helix structure, stability and assembly. Protein Pept Lett 2002; 9(2): 107–16

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Brodsky B, Ramshaw JA. The collagen triple-helix structure. Matrix Biol 1997; 15(8-9): 545–54

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001; 33(1): 7–21

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Patino MG, Neiders ME, Andreana S, et al. Collagen: an overview. Implant Dent 2002; 11(3): 280–5

    PubMed  Article  Google Scholar 

  19. 19.

    Ramshaw J, Werkmeister J, Glattauner V. Collagen-based biomaterials. Biotechol Genet Eng Rev 1996; 13: 335–82

    CAS  Google Scholar 

  20. 20.

    Bateman JF, Lamandé SR, Ramshaw JAM. Collagen superfamily. In: Comper WD, editor. Extracellular matrix. Amsterdam: Harwood Academic Publishers, 1996: 22–67

    Google Scholar 

  21. 21.

    Brown JC, Timpl R. The collagen superfamily. Int Arch Allergy Immunol 1995; 107(4): 484–90

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: application for tissue engineering and gene therapy. Med Biol Eng Comput 2000; 38: 211–8

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Eyre DR. Collagen: molecular diversity in the body’s protein scaffold. Science 1980; 207(4437): 1315–22

    PubMed  CAS  Google Scholar 

  24. 24.

    Kadler K. Extracellular matrix 1: fibril-forming collagens. Protein Profile 1995; 2 (5): 491–619

    Google Scholar 

  25. 25.

    Kemp PD. Tissue engineering and cell-populated collagen matrices. Methods Mol Biol 2000; 139: 287–93

    PubMed  CAS  Google Scholar 

  26. 26.

    Lee CH, Singla A, Lee Y. Biomédical applications of collagen. Int J Pharm 2001; 221(1–2): 1–22

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Lin CQ, Bisseil MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 1993; 7(9): 737–43

    PubMed  CAS  Google Scholar 

  28. 28.

    Patino MG, Neiders ME, Andreana S, et al. Collagen as an implantable material in medicine and dentistry. J Oral Implantol 2002; 28(5): 220–5

    PubMed  Article  Google Scholar 

  29. 29.

    Prockop D, Kivirikko K. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995; 64: 403–34

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Ricard-Blum S, Dublet B, van der Rest M. Unconventional collagens. New York: Oxford University Press, 2000

    Google Scholar 

  31. 31.

    Wong Po FC, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev 2002; 54(8): 1131–43

    Article  Google Scholar 

  32. 32.

    Yang C, Li SW, Helminen HJ, et al. Apoptosis of chondrocytes in transgenic mice lacking collagen II. Exp Cell Res 1997; 235(2): 370–3

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Bonnet C, Charriere G, Vaquier J, et al. Bovine collagen induced systemic symptoms: antibody formation against bovine and human collagen. J Rheumatol 1996; 23(3): 545–7

    PubMed  CAS  Google Scholar 

  34. 34.

    Charriere G, Bejot M, Schnitzler L, et al. Reactions to a bovine collagen implant: clinical and immunologic study in 705 patients. J Am Acad Dermatol 1989; 21(6): 1203–8

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Cooperman L, Michaeli D. The immunogenicity of injectable collagen: I. A 1-year prospective study. J Am Acad Dermatol 1984; 10(4): 638–46

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Meade KR, Silver FH. Immunogenicity of collagenous implants. Biomaterials 1990; 11(3): 176–80

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Patino MG, Neiders ME, Andreana S, et al. Cellular inflammatory response to porcine collagen membranes. J Periodontal Res 2003; 38(5): 458–64

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Asher DM. The transmissible spongiform encephalopathy agents: concerns and responses of United States regulatory agencies in maintaining the safety of biologics. Dev Biol Stand 1999; 100: 103–18

    PubMed  CAS  Google Scholar 

  39. 39.

    Hartmann DJ, Charriere G, Ricard-Blum S, et al. Immunogenicity of injectable collagen implants [letter]. J Dermatol Surg Oncol 1990; 16(4): 394

    PubMed  CAS  Google Scholar 

  40. 40.

    Hellman KB, Honstead JP, Vincent CK. Adventitious agents from animal-derived raw materials and production systems. Dev Biol Stand 1996; 88: 231–4

    PubMed  CAS  Google Scholar 

  41. 41.

    Miekka SI, Forng RY, Rohwer RG, et al. Inactivation of viral and prion pathogens by gamma-irradiation under conditions that maintain the integrity of human albumin. Vox Sang 2003; 84(1): 36–44

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Schrieber R, Seybold U. Gelatine production, the six steps to maximum safety. Dev Biol Stand 1993; 80: 195–8

    PubMed  CAS  Google Scholar 

  43. 43.

    Bulleid NJ, John DC, Kadler KE. Recombinant expression systems for the production of collagen. Biochem Soc Trans 2000; 28(4): 350–3

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Chapman WC, Sherman R, Boyce S. A novel collagen-based composite offers effective hemostasis for multiple surgical indications: results of a randomized controlled trial. Surgery 2001; 129(4): 445–50

    Article  Google Scholar 

  45. 45.

    Chapman WC, Wren SM, Lebovic GS, et al. Effective management of bleeding during tumor resection with a collagen-based hemostatic agent. Am Surg 2002; 68(9): 802–7

    PubMed  Google Scholar 

  46. 46.

    Green JG, Durham TM. Application of INSTAT hemostat in the control of gingival hemorrhage in the patient with thrombocytopenia: a case report. Oral Surg Oral Med Oral Pathol 1991; 71(1): 27–30

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Kheirabadi BS, Field-Ridley A, Pearson R. Comparative study of the efficacy of the common topical hemostatic agents with fibrin sealant in a rabbit aortic anastomosis model. J Surg Res 2002; 106: 99–107

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Martinez L, Ros Z, Lopez-Gutierrez JC, et al. Integra artificial dermis in pediatrie reconstructive surgery. Cir Pediatr 2002; 15(3): 97–100

    PubMed  CAS  Google Scholar 

  49. 49.

    Ozerdem OR, Wolfe SA, Marshall D. Use of skin substitutes in pediatrie patients. J Craniofac Surg 2003; 14(4): 517–20

    PubMed  Article  Google Scholar 

  50. 50.

    Palao R, Gomez P, Huguet P. Burned breast reconstructive surgery with Integra dermal regeneration template. Br J Plast Surg 2003; 56(3): 252–9

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Papp A, Harma M. A collagen based dermal substitute and the modified Meek technique in extensive burns: report of three cases. Burns 2003; 29(2): 167–71

    PubMed  Article  Google Scholar 

  52. 52.

    Quarmby JW, Burnand KG, Lockhart SJM, et al. Prospective randomized trial of woven versus collagen-impregnated knitted prosthetic Dacron grafts in aortoiliac surgery. Br J Surg 1998; 85: 775–7

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Sclafani AP, Romo T. Injectable fillers for facial soft tissue enhancement. Facial Plast Surg 2000; 16(1): 29–33

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Wallace D, McPherson J, Ellingsworth L. In: Nimni ME, editor. Collagen. Boca Raton (FL): CRC Press, 1988: 117–44

  55. 55.

    Wisser D, Steffes J. Skin replacement with a collagen based dermal substitute, autologous keratinocytes and fibroblasts in burn trauma. Burns 2003; 29(4): 375–80

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Cheng EL, Maruyama I, SundarRaj N, et al. Expression of type XII collagen and hemidesmosome-associated proteins in keratoconus corneas. Curr Eye Res 2001; 22 (5): 333–40

    Google Scholar 

  57. 57.

    Vaughn PR, Galanis M, Richards KM, et al. Production of recombinant hydroxylated human type III collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol 1998; 17(6): 511–8

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Berisio R, Vitagliano L, Mazzarella L, et al. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3). Protein sci 2002; 11(2): 262–70

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Banyard J, Bao L, Zetter BR. Type XXIII collagen, a new transmembrane collagen identified in metastatic tumor cells. J Biol Chem 2003; 278(23): 20989–94

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Boot-Handford RP, Tuckwell DS, Plumb DA, et al. A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem 2003; 278(33): 31067–77

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Chanut-Delalande H, Fichard A, Bernocco S, et al. Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J Biol Chem 2001; 276(26): 24352–9

    PubMed  CAS  Google Scholar 

  62. 62.

    Diab M, Wu JJ, Eyre DR. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites. Biochem J 1996; 314(Pt 1): 327–32

    PubMed  CAS  Google Scholar 

  63. 63.

    Eyre D. Collagen of articular cartilage. Arthritis Res 2002; 4(1): 30–5

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Eyre DR, Wu JJ, Fernandes RJ, et al. Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem Soc Trans 2002; 30(Pt 6): 893–9

    PubMed  CAS  Google Scholar 

  65. 65.

    Fernandes RJ, Schmid TM, Eyre DR. Assembly of collagen types II, IX and XI into nascent hetero-fibrils by a rat chondrocyte cell line. Eur J Biochem 2003; 270(15): 3243–50

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Fertala A, Sieron AL, Ganguly A, et al. Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem J 1994; 298(Pt 1): 31–7

    PubMed  CAS  Google Scholar 

  67. 67.

    Fertala A, Sieron AL, Adachi E, et al. Collagen II containing a Cys substitution for Arg-alpha1-519: abnormal interactions of the mutated molecules with collagen IX. Biochemistry 2001; 40: 14422–8

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Fitzgerald J, Bateman JF. A new FACIT of the collagen family: COL21 Al. FEBS Lett 2001; 505(2): 275–80

    CAS  Article  Google Scholar 

  69. 69.

    Hashimoto T, Wakabayashi T, Watanabe A, et al. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/ collagen type XXV. EMBO J 2002; 21(7): 1524–34

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Ichimura S, Wu JJ, Eyre DR. Two-dimensional peptide mapping of cross-linked type IX collagen in human cartilage. Arch Biochem Biophys 2000; 378(1): 33–9

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Keizer-Gunnink I, Vuorela A, Myllyharju J, et al. Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris. Matrix Biol 2000; 19(1): 29–36

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Koch M, Foley JE, Hahn R, et al. Alpha l(Xx) collagen, a new member of the collagen subfamily, fibril-associated collagens with interrupted triple helices. J Biol Chem 2001; 276(25): 23120–6

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Koch M, Laub F, Zhou P, et al. Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J Biol Chem 2003; 278(44): 43236–44

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Matsui Y, Wu JJ, Weis MA, et al. Matrix deposition of tryptophan-containing allelic variants of type IX collagen in developing human cartilage. Matrix Biol 2003; 22(2): 123–9

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Mazzorana M, Snellman A, Kivirikko KI, et al. Involvement of prolyl 4-hydroxylase in the assembly of trimeric minicollagen XII: study in a baculovirus expression system. J Biol Chem 1996; 271(46): 29003–8

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Myllyharju J, Nokelainen M, Vuorela A, et al. Expression of recombinant human type I-III collagens in the yeast Pichia pastoris. Biochem Soc Trans 2000; 28(4): 353–7

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Niyibizi C, Eyre DR. Structural characteristics of cross-linking sites in type V collagen of bone: chain specificities and heterotypic links to type I collagen. Eur J Biochem 1994; 224(3): 943–50

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Olsen DR, Leigh SD, Chang R, et al. Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem 2001; 276(26): 24038–43

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Sato K, Yomogida K, Wada T, et al. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. J Biol Chem 2002; 277(40): 37678–84

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Toman PD, Pieper F, Sakai N, et al. Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 1999; 8: 415–27

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Tuckwell D. Identification and analysis of collagen alpha 1 (XXI), a novel member of the FACIT collagen family. Matrix Biol 2002; 21(1): 63–6

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Klionsky D, Banta L. Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 1988; 8(5): 2105–16

    PubMed  CAS  Google Scholar 

  83. 83.

    Vuorela A, Myllyharju J, Nissi R, et al. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 1997; 16: 6702–12

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Wu JJ, Eyre DR. Structural analysis of cross-linking domains in cartilage type XI collagen: insights on polymeric assembly. J Biol Chem 1995; 270(32): 18865–70

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Hulmes DJ. The collagen superfamily: diverse structures and assemblies. Essays Biochem 1992; 27: 49–67

    PubMed  CAS  Google Scholar 

  86. 86.

    Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology 2000; 49(1-2): 159–70

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Trinder PK, Maeurer MJ, Brackertz D, et al. The collagen-like component of the complement system, C1q, is recognized by 7 S autoantibodies and is functionally impaired in synovial fluids of patients with rheumatoid arthritis. Immunology 1996; 87(3): 355–61

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Kurata H, Cheng HM, Kozutsumi Y, et al. Role of the collagen-like domain of the human serum mannan-binding protein in the activation of complement and the secretion of this lectin. Biochem Biophys Res Commun 1993; 191(3): 1204–10

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Matsushita M, Endo Y, Taira S, et al. A novel human serum lectin with collagen-and fibrinogen-like domains that functions as an opsonin. J Biol Chem 1996; 271(5): 2448–54

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Eda S, Suzuki Y, Kase T, et al. Recombinant bovine conglutinin, lacking the Nterminal and collagenous domains, has less conglutination activity but is able to inhibit haemagglutination by influenza A virus. Biochem J 1996; 316(Pt 1): 43–8

    PubMed  CAS  Google Scholar 

  91. 91.

    Kolble K, Reid KB. The genomics of soluble proteins with collagenous domains: Clq, MBL, SP-A, SP-D, conglutinin, and CL-43. Behring Inst Mitt 1993; (93): 81–6

  92. 92.

    Reid KB, Colomb M, Petry F, et al. Complement component Cl and the collectins: first-line defense molecules in innate and acquired immunity. Trends Immunol 2002; 23(3): 115–7

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    McCormack FX, Whitsett JA. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 2002; 109(6): 707–12

    PubMed  CAS  Google Scholar 

  94. 94.

    Kishore U, Reid KB. Structures and functions of mammalian collectins. Results Probl Cell Differ 2001; 33: 225–48

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Reid KB. Structure/function relationships in the collectins (mammalian lectins containing collagen-like regions). Biochem Soc Trans 1993; 21(2): 464–8

    PubMed  CAS  Google Scholar 

  96. 96.

    Lu J, Le Y. Ficolins and the fibrinogen-like domain. Immunobiology 1998; 199(2): 190–9

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Matsushita M, Fujita T. Ficolins and the lectin complement pathway. Immunol Rev 2001; 180: 78–85

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Kivirikko KI. Collagen biosynthesis: a mini-review cluster. Matrix Biol 1998; 16(7): 355–6

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Tandon M, Wu M, Begley TP, et al. Substrate specificity of human pro-lyl-4-hydroxylase. Bioorg Med Chem Lett 1998; 8 (10): 1139–44

    Google Scholar 

  100. 100.

    Vuori K, Pihlajaniemi T, Marttila M, et al. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc Natl Acad sci U S A 1992; 89(16): 7467–70

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Rautavuoma K, Takaluoma K, Passoja K, et al. Characterization of three fragments that constitute the monomers of the human lysyl hydroxylase isoenzymes 1-3: the 30-kDa N-terminal fragment is not required for lysyl hydroxylase activity. J Biol Chem 2002; 277(25): 23084–91

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Heikkinen J, Risteli M, Wang C, et al. Lysyl hydroxylase 3 is a multifunctional protein possessing collagen glucosyltransferase activity. J Biol Chem 2000; 275(46): 36158–63

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Puistola U, Turpeenniemi-Hujanen TM, Myllyla R, et al. Studies on the lysyl hydroxylase reaction: II. Inhibition kinetics and the reaction mechanism. Bi-ochim Biophys Acta 1980; 611(1): 51–60

    CAS  Article  Google Scholar 

  104. 104.

    Kivirikko KI. Posttranslational Processing of Collagens. In: Bittar EE, Bittar N, editors. Principles of medical biology. Cellular organelles and the extracellular matrix. London: JAI Press, 1995: 233–54

    Google Scholar 

  105. 105.

    Tuderman L, Prockop DJ. Procollagen N-proteinase: properties of the enzyme purified from chick embryo tendons. Eur J Biochem 1982; 125(3): 545–9

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 2001; 70: 1–33

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Kagan HM, Trackman PC. Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol 1991; 5(3): 206–10

    PubMed  CAS  Google Scholar 

  108. 108.

    Kenyon K, Modi WS, Contente S, et al. A Novel Human cDNA with a Predicted Protein Similar to Lysyl Oxidase Maps to Chromosome 15q24-q25. J Biol Chem 1993; 268(25): 18435–7

    PubMed  CAS  Google Scholar 

  109. 109.

    Kim M, Otsuka M, Shimamura E, et al. The effect of L-ascorbic acid on age-related changes of pyridinoline in cartilage collagen of guinea pigs. J Nutr sci Vitaminol (Tokyo) 1998; 44(2): 217–24

    CAS  Article  Google Scholar 

  110. 110.

    Pokharna HK, Phillips FM. Collagen crosslinks in human lumbar intervertebral disc aging. Spine 1998; 23(15): 1645–8

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers 2002; 66(1): 19–32

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 2002; 22(1): 51–86

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Dung SZ. Effects of mutans streptococci, Actinomyces species and Porphyromonas gingivalis on collagen degradation. Zhonghua Yi Xue Za Zhi (Taipei) 1999; 62(11): 764–74

    CAS  Google Scholar 

  114. 114.

    Hynes RO, Bader BL, Hodivala-Dilke K. Integrins in vascular development. Braz J Med Biol Res 1999; 32: 501–10

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 2000; 19(4): 319–23

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Zhang WM, Kapyla J, Puranen JS, et al. Alpha llbeta 1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 2003; 278(9): 7270–7

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Humphries M. Integrin structure. Biochem Soc Trans 2000; 28(4): 311–40

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Davis GE. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 1992; 182(3): 1025–31

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Schwartz MA. Integrin signaling revisited. Trends Cell Biol 2001; 11(12): 466–70

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Agarwal G, Kovac L, Radziejewski C, et al. Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation. Biochemistry 2002; 41(37): 11091–8

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Vogel WF. Collagen-receptor signaling in health and disease. Eur J Dermatol 2001; 11(6): 506–14

    PubMed  CAS  Google Scholar 

  122. 122.

    Koyama H, Raines EW, Bornfeldt KE, et al. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 1996; 87(6): 1069–78

    PubMed  CAS  Article  Google Scholar 

  123. 123.

    Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science 2001; 294(5547): 1708–12

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Gohari S, Gambia C, Healey M, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 2002; 28(12): 1107–14

    PubMed  Article  Google Scholar 

  125. 125.

    Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000; 25(3): 376–81

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographie outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 2002; 27(21): 2396–408

    PubMed  Article  Google Scholar 

  127. 127.

    Zyderm collagen implant, package insert [online]. Palo Alto (CA): Collagen Aesthetics (International) Ltd. Available from URL: http://www.inamed.com/products/facial/us/patient/zz/prodinfo.html [Accessed 2003 Dec 19]

  128. 128.

    Avitene (r) Microfibrillar Collagen Hemostat, package insert [online]. Woburn (MA): MedChem Products Inc. Available from URL: http://www.davol.com/HTMLFiles/Hemostasis/AviteneMicroInsert1.html [Accessed 2003 Dec 19]

  129. 129.

    Ala-Kokko L, Hyland J, Smith C, et al. Expression of a human cartilage procollagen gene (COL2A1) in mouse 3T3 cells. J Biol Chem 1991; 266(22): 14175–8

    PubMed  CAS  Google Scholar 

  130. 130.

    Geddis AE, Prockop DJ. Expression of human COL1A1 gene in stably transfected HT1080 cells: the production of a thermostable homotrimer of type I collagen in a recombinant system. Matrix 1993; 13(5): 399–405

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Myllyharju J, Lamberg A, Notbohm H, et al. Expression of wild-type and modified proalpha chains of human type I procollagen in insect cells leads to the formation of stable [alpha1(I)]2alpha2(I) collagen heterotrimers and [al-pha1 (I)]3 homotrimers but not [alpha2(I)]3 homotrimers. J Biol Chem 1997; 272: 21824–30

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Tomita M, Kitajima T, Yoshizato K. Formation of recombinant human procollagen I heterotrimers in a baculovirus expression system. J Biochem (Tokyo) 1997; 121(6): 1061–9

    CAS  Article  Google Scholar 

  133. 133.

    Veijola J, Koivunen P, Annunen P, et al. Cloning, baculovirus expression, and characterization of the alpha subunit of prolyl 4-hydroxylase from the nematode Caenorhabditis elegans: this alpha subunit forms an active alpha beta dimer with the human protein disulfide isomerase/beta subunit. J Biol Chem 1994; 269(43): 26746–53

    PubMed  CAS  Google Scholar 

  134. 134.

    Veijola J, Pihlajaniemi T, Kivirikko KI. Co-expression of the alpha subunit of human prolyl 4-hydroxylase with BiP polypeptide in insect cells leads to the formation of soluble and insoluble complexes: soluble alpha-subunit-BiP complexes have no prolyl 4-hydroxylase activity. Biochem J 1996; 35 (Pt 2): 613–8

    Google Scholar 

  135. 135.

    de Bruin EC, Werten MWT, Laane C, et al. Endogenous prolyl 4-hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Res 2002; 1: 291–8

    PubMed  Article  Google Scholar 

  136. 136.

    Nokelainen M, Tu H, Vuorela A, et al. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 2001; 18: 797–806

    PubMed  CAS  Article  Google Scholar 

  137. 137.

    Toman PD, Chisholm G, McMullin H, et al. Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 2000; 275(30): 23303–9

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Werten MW, van den Bosch TJ, Wind RD, et al. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 1999; 15: 1087–96

    PubMed  CAS  Article  Google Scholar 

  139. 139.

    Werten MW, Wisselink WH, Jansen-van den Bosch TJ, et al. Secreted production of a custom-designed, highly hydrophilic gelatin in Pichia pastoris. Protein Eng 2001; 14(6): 447–54

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    John DCA, Watson A, Kind AJ, et al. Expression of an engineered form of recombinant procollagen in mouse milk. Nat Biotechnol 1999; 17: 385–9

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Tomita M, Munetsuna H, Sato T, et al. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 2002; 21(1): 52–6

    PubMed  Article  CAS  Google Scholar 

  142. 142.

    Yang C, Bodo M, Chang R, et al. Development of recombinant gelatin by expression of recombinant collagen in yeast and plants [abstract]. American Association of Pharmaceutical Scientists Annual Meeting and Exposition; 1999 Nov 17; New Orleans

  143. 143.

    Merle C, Perret S, Lacour T, et al. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 2002; 515(1–3): 114–8

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Ruggiero F, Exposito JY, Bournat P, et al. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett 2000; 469: 132–6

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Pihlajaniemi T, Myllyla R, Kivirikko KI. Prolyl 4-hydroxylase and its role in collagen synthesis. J Hepatol 1991; 13Suppl. 3: S2–7

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Kivirikko KI, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 1998; 72: 325–98

    PubMed  CAS  Google Scholar 

  147. 147.

    Vuorela A, Myllyharju J, Pihlajaniemi T, et al. Coexpression with collagen markedly increases the half-life of the recombinant human prolyl 4-hydroxylase tetramer in the yeast Pichia pastoris. Matrix Biol 1999; 18(5): 519–22

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Suzuki K. Collagen derived from a porcine skin. Fragrance J 2001; 29(11): 59–64

    Google Scholar 

  149. 149.

    Olsen D, Yang C, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 2003; 55: 1547–67

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Nimni ME. Collagen: structure, function, and metabolism in normal and fibrotic tissues. Semin Arthritis Rheum 1983; 13(1): 1–86

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine 2001; 26(8): 933–9

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Akamaru T, Suh D, Boden SD, et al. Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine 2003; 28(5): 429–34

    PubMed  Google Scholar 

  153. 153.

    Burkus JK, Dorchak JD, Sanders DL. Radiographie assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 2003; 28(4): 372–7

    PubMed  Google Scholar 

  154. 154.

    Cornell CN, Lane JM, Chapman M, et al. Multicenter trial of Collagraft as bone graft substitute. J Orthop Trauma 1991; 5(1): 1–8

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Walsh WR, Harrison J, Loefler A, et al. Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop 2000; 375: 258–66

    PubMed  Article  Google Scholar 

  156. 156.

    Tay BK, Le AX, Heilman M, et al. Use of a collagen-hydroxyapatite matrix in spinal fusion: a rabbit model. Spine 1998; 23(21): 2276–81

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    McPherson JM, Wallace D, Sawamura S, et al. Collagen fibrilliogenesis in vitro: a characterization of fibril quality as a function of assembly conditions. Coll Relat Res 1985; 5: 2119–35

    Article  Google Scholar 

  158. 158.

    Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem 1990; 185(1): 131–5

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Wong S. Chemistry of protein conjugation and crosslinking. Boca Raton (FL): CRC, 1991: 195-207

  160. 160.

    Process for fixation of calcification-resistant biological tissue. Girardot J-M, Girardot M-N, inventors; Biomédical Design, Inc., assignees. U.S. Patent No. 5,733,339. 1998 Mar 31

  161. 161.

    Method for fixation of biological tissue. Girardot, J-M, Girardot M-N, inventors; Biomedical Design, Inc, assignees. U.S. Patent No. 5,477,536 1995 Sep 5

  162. 162.

    Olde Damink LH, Dijkstra PJ, van Luyn MJ, et al. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials 1996; 17(7): 679–84

    Article  Google Scholar 

  163. 163.

    van Wachem PB, van Luyn MJ, Olde Damink LH, et al. Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall. Int J Artif Organs 1994; 17(4): 230–9

    PubMed  Google Scholar 

  164. 164.

    Bellows CG, Aubin JE, Heersche JN, et al. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 1986; 38(3): 143–54

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    Laurencin CT, Attawia MA, Elgendy HE, et al. Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone 1996; 19(1 Suppl.): 93S–9S

    PubMed  CAS  Article  Google Scholar 

  166. 166.

    Ali S. Matrix formation and mineralization in bone. In: Whitehead CC, editor. Bone biology and skeletal disorders in poultry. Oxford: Carfax Publishing, 1992: 19,38

    Google Scholar 

  167. 167.

    Kassab MM, Cohen RE. The etiology and prevalence of gingival recession. J Am Dent Assoc 2003; 134(2): 220–5

    PubMed  Google Scholar 

  168. 168.

    Kassab MM, Cohen RE. Treatment of gingival recession. J Am Dent Assoc 2002; 133(11): 1499–506

    PubMed  Google Scholar 

  169. 169.

    Danesh-Meyer MJ, Chen ST, Rams TE. Digital subtraction radiographic analysis of GTR in human intrabony defects. Int J Periodontics Restorative Dent 2002; 22(5): 441–9

    PubMed  Google Scholar 

  170. 170.

    Eisig SB, Ho V, Kraut R, et al. Alveolar ridge augmentation using titanium micromesh: an experimental study in dogs. J Oral Maxillofac Surg 2003; 61(3): 347–53

    PubMed  Article  Google Scholar 

  171. 171.

    Bunyaratavej P, Wang HL. Collagen membranes: a review. JPeriodontol 2001; 72(2): 215–29

    CAS  Article  Google Scholar 

  172. 172.

    Takeishi H, Irie K, Okuda K, et al. Molded bone augmentation by a combination of barrier membrane and recombinant human bone morphogenetic protein-2. Oral Dis 2001; 7(5): 281–6

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    Scott DL, Shipley M, Dawson A, et al. The clinical management of rheumatoid arthritis and osteoarthritis: strategies for improving clinical effectiveness. Br J Rheumatol 1998; 37(5): 546–54

    PubMed  CAS  Article  Google Scholar 

  174. 174.

    Brittberg M, Tallheden T, Sjogren-Jansson B, et al. Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop 2001; 391 Suppl.: S337–48

    PubMed  Article  Google Scholar 

  175. 175.

    Fuss M, Ehlers EM, Russlies M, et al. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions: a light, scanning and transmission electron microscopy study. Anat Anz 2000; 182(4): 303–10

    CAS  Article  Google Scholar 

  176. 176.

    Russlies M, Behrens P, Wunsch L, et al. A cell-seeded biocomposite for cartilage repair. Ann Anat 2002; 184(4): 317–23

    PubMed  CAS  Article  Google Scholar 

  177. 177.

    Lu L, Zhu X, Valenzuela RG, et al. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop 2001; 391 Suppl.: S251–70

    PubMed  Article  Google Scholar 

  178. 178.

    Mast B. Wound healing: biochemical and clinical aspects. In: Cohen IK, Diegelmann RF, Lindlbad WJ, editors. The skin. Philadelphia (PA): W.B. Saunders, 2003

    Google Scholar 

  179. 179.

    Bell E, Rosenberg M, Kemp P, et al. Recipes for reconstituting skin. J Biomech Eng 1991; 113(2): 113–9

    PubMed  CAS  Article  Google Scholar 

  180. 180.

    Heimbach D, Luterman A, Burke J, et al. Artificial dermis for major burns: a multi-center randomized clinical trial. Ann Surg 1988; 208(3): 313–20

    PubMed  CAS  Article  Google Scholar 

  181. 181.

    Yannas IV, Burke JF. Design of an artificial skin: I. Basic design principles. J Biomed Mater Res 1980; 14(1): 65–81

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad sci U S A 1979; 76(3): 1274–8

    PubMed  CAS  Article  Google Scholar 

  183. 183.

    Hayashi M, Tomita M, Yoshizato K. Production of EGF-collagen chimeric protein which shows the mitogenic activity. Biochim Biophys Acta 2001; 1528(2–3): 187–95

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The work described in this review article was carried out in part with support from the National Institute of Arthritis and Musculoskeletal Diseases under grant number AR45879. The authors are employed by FibroGen Inc., a Biotechnology company developing recombinant human collagen for medical applications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James W. Polarek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, C., Hillas, P.J., Báez, J.A. et al. The Application of Recombinant Human Collagen in Tissue Engineering. BioDrugs 18, 103–119 (2004). https://doi.org/10.2165/00063030-200418020-00004

Download citation

Keywords

  • Collagen Fibril
  • Bovine Spongiform Encephalopathy
  • Tissue Engineering Application
  • Collagen Membrane
  • Bone Graft Substitute